QTZ40塔式起重機塔身的設計-版本2
資源目錄里展示的全都有,所見即所得。下載后全都有,請放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問可加】
摘要
本次設計在參照同類塔式起重機基礎上,對QTZ40型塔式起重機進行總體設計及塔身分析設計。在塔身設計工程中,采用了有限元法對其進行分析計算,采用了ANSYS10.0軟件進行分析。
首先按照整機主要性能參數,確定各機構類型及鋼結構型式,主要確定了塔身的結構參數,并按照風載荷平行于起重臂方向,風載荷與起重臂方向呈45度角時兩種工況分析。通過對塔身作適當的簡化,應用ANSYS10.0軟件建立塔身的有限元模型,施加各工況載荷,進行求解,進而可得各工況下各節(jié)點受力情況及各單元所受軸向力、軸向應力大小及各工況下塔身的變形撓度大小,并能演示塔身加載過程的動畫,清晰的展現了各種工況下塔身的受力性能。
本次設計分析通過修改模型參數共準備了三種不同方案,進而對不同模型方案進行分析比較。由比較不同模型在相同工況下的受力狀況及剛度狀況,綜合分析強度和剛度條件,可得出受力最為合理的一組模型參數,通過對此組參數下模型進行強度及剛度校核,進而獲得塔身的最終參數結果。
關鍵詞:QTZ40型塔式起重機 塔身 有限元分析 ANSYS10.0
ABSTRACT
Based on the design of the similar tower crane, this design is composed of the system design and the tower body design of the QTZ40 tower crane. In the tower body design progress, it has carried Finite Element Method on the analysis computation, and used ANSYS10.0 software.
According to the entire machine main performance parameters, various organizations type and the steel structure pattern have been determined. And then, the parameter analysis is carried on two different operating modes which are composed of the direction of the wind load is parallel to the lazy arm and the direction of the wind load is at a 45 degrees angle with the lazy arm. Through the reasonable simplification of the tower body, the tower body finite element model is established by applying ANSYS12.0 software, and then it’s exerted various operating modes loads, and carried on the solution. Then ANSYS10.0 software can calculate various nodes stress situation, the axial stress various units receive, and the tower body distortion size under various operating modes. Also it can demonstrate the animation in the loads-carrying process on the tower body, which has clearly displayed the stress performance of the tower body under various operating modes.
Through the revision of the model parameters, three different schemes have been prepared for the analysis comparison, which is carried on the different models. Because the stress condition and stiffness condition of different model are compared under the same operating mode, and a comprehensive analysis of the intensity and the stiffness condition is carried on, a most reasonable model parameter can be obtained. Through the intensity and the stiffness examination regarding this model, then the final parameter result of the tower body can be obtained.
Key words: QTZ40 tower crane Tower body Finite element analysis ANSYS10.0
目錄
第1章 前言·······················································1
1.1 塔式起重機概述··············································1
1.2 塔式起重機的發(fā)展情況········································1
1.3 塔式起重機的發(fā)展趨勢·······································3
第2章 總體設計··················································5
2.1 概述······················································· 5
2.2 確定總體設計方案············································5
2.2.1 金屬結構···············································5
2.2.2 工作機構···············································22
2.2.3 安全保護裝置···········································29
2.3 總體設計設計總則···········································32
2.3.1 整機工作級別 ··········································32
2.3.2 機構工作級別···········································32
2.3.3主要技術性能參數······································· 33
2.4 平衡重的計算···············································33
2.5 起重特性曲線···············································35
2.6 塔機風力計算·············································· 36
2.6.1 工作工況Ⅰ············································37
2.6.2 工作工況Ⅱ············································41
2.6.3 非工作工況Ⅲ···········································43
2.7整機的抗傾翻穩(wěn)定性·········································45
2.7.1工作工況Ⅰ············································46
2.7.2工作工況Ⅱ············································47
2.7.3非工作工況Ⅲ··········································49
2.7.4工作工況Ⅳ············································50
2.8固定基礎穩(wěn)定性計算·········································51
第3章 塔身的有限元分析設計···································53
3.1 塔身模型簡化···············································53
3.2 有限元分析計算·············································54
3.2.1 方案一···············································54
3.2.2 方案二··············································79
3.2.3 方案三··············································98
第4章 塔身的受力分析計算····································121
4.1 穩(wěn)定性校核················································121
4.2 塔身的剛度檢算············································122
4.3 塔身的強度校核············································124
4.4 鏈接套焊縫強度的計算······································125
4.5 塔身腹桿的計算············································126
4.6 高強度螺栓強度的計算······································127
第5章 畢業(yè)設計小結···········································129
致謝·····························································130
主要參考文獻····················································131
畢業(yè)實習報告
附:英文翻譯
英文原文
收藏
編號:83528094
類型:共享資源
大?。?span id="ievbyqtbdd" class="font-tahoma">3.26MB
格式:ZIP
上傳時間:2022-05-01
50
積分
- 關 鍵 詞:
-
QTZ40
塔式起重機
設計
版本
- 資源描述:
-
資源目錄里展示的全都有,所見即所得。下載后全都有,請放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問可加】
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。