浙江省2018年中考數(shù)學(xué)總復(fù)習(xí) 第五章 基本圖形(二)第23講 直線與圓的位置關(guān)系講解篇
《浙江省2018年中考數(shù)學(xué)總復(fù)習(xí) 第五章 基本圖形(二)第23講 直線與圓的位置關(guān)系講解篇》由會(huì)員分享,可在線閱讀,更多相關(guān)《浙江省2018年中考數(shù)學(xué)總復(fù)習(xí) 第五章 基本圖形(二)第23講 直線與圓的位置關(guān)系講解篇(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第23講 直線與圓的位置關(guān)系
1.直線和圓的位置關(guān)系:
考試內(nèi)容
考試
要求
直線和圓
的位置
圖形(設(shè)r是⊙O的半徑,d是圓心O到直線l的距離)
公共點(diǎn)個(gè)數(shù)
圓心到直線的距離
d與半徑r的關(guān)系
公共點(diǎn)名稱
直線名稱
a
相交
2
d
2、_________的直線是圓的切線. (3)過半徑外端點(diǎn)且 半徑的直線是圓的切線. 切線的 性質(zhì) (1)切線與圓只有____________________公共點(diǎn). (2)切線到圓心的距離等于圓的____________________. (3)切線垂直于經(jīng)過切點(diǎn)的 . 切線長(zhǎng) 過圓外一點(diǎn)作圓的切線,這點(diǎn)和 之間的線段長(zhǎng)叫做這點(diǎn)到圓的切線長(zhǎng). 切線長(zhǎng) 定理 從圓外一點(diǎn)可以引圓的____________________條切線,它們的切線長(zhǎng)________
3、____________,這一點(diǎn)和圓心的連線____________________兩條切線的夾角. 3.三角形與圓 考試內(nèi)容 考試 要求 確定圓 的條件 不在 直線的三個(gè)點(diǎn)確定一個(gè)圓. b 三角形 的外心 經(jīng)過三角形各頂點(diǎn)的圓叫做三角形的外接圓, 的圓心叫做三角形的 ,這個(gè)三角形叫做這個(gè)圓的內(nèi)接三角形;外心到三角形 的距離相等. a b 三角形 的內(nèi)心 與三角形各邊都相切的圓叫三角形的 ,內(nèi)切圓的圓心叫做三
4、角形的 ,這個(gè)三角形叫圓的外切三角形,內(nèi)心到三角形 的距離相等. 拓展 直角三角形的外接圓與內(nèi)切圓半徑的求法: 若a,b是Rt△ABC的兩條直角邊,c為斜邊,則:①直角三角形的外接圓半徑R=;②直角三角形的內(nèi)切圓半徑r=. 考試內(nèi)容 考試 要求 基本 思想 分類討論思想:圓是一種極為重要的幾何圖形,由于圖形位置、形狀及大小的不確定,經(jīng)常出現(xiàn)多結(jié)論情況,解題時(shí)漏解出錯(cuò)時(shí)有發(fā)生,解決這類問題,一定要仔細(xì)分析,縝密思考,分類討論,逐一解答. (1)由于點(diǎn)在圓周上的位置的不確定而分類討論; (2)由于弦所對(duì)弧
5、的優(yōu)劣情況的不確定而分類討論; (3)由于弦的位置不確定而分類討論; (4)由于直線與圓的位置關(guān)系的不確定而分類討論. c 基本 方法 判斷一直線是否為圓的切線的方法:①連半徑,證垂直;②作垂線,證半徑. 1. (2016·衢州)如圖,AB是⊙O的直徑,C是⊙O上的點(diǎn),過點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)E,若∠A=30°,則sin∠E的值為( ) A. B. C. D. 2.(2015·湖州)如圖,以點(diǎn)O為圓心的兩個(gè)圓中,大圓的弦AB切小圓于點(diǎn)C,OA交小圓于點(diǎn)D,若OD
6、=2,tan∠OAB=,則AB的長(zhǎng)是( ) A.4 B.2 C.8 D.4 3. (2015·嘉興)如圖,△ABC中,AB=5,BC=3,AC=4,以點(diǎn)C為圓心的圓與AB相切,則⊙C的半徑為( ) A.2.3 B.2.4 C.2.5 D.2.6 4. (2017·杭州)如圖,AT切⊙O于點(diǎn)A,AB是⊙O的直徑.若∠ABT=40°,則∠ATB=____________________. 【問題
7、】(1)如圖,在平面直角坐標(biāo)系xOy中,半徑為2的⊙P的圓心P的坐標(biāo)為(-3,0),將⊙P沿x軸正方向平移,使⊙P與y軸相切,則平移的距離為________. (2)通過(1)的解答,你能聯(lián)想直線與圓相切的哪些知識(shí). 【歸納】通過開放式問題,歸納、疏理直線與圓的位置關(guān)系,以及切線的判定和性質(zhì). 類型一 直線與圓位置關(guān)系的判斷 (2017·無錫模擬)如圖,平面直角坐標(biāo)系中,已知P(6,8),M為OP中點(diǎn),以P為圓心,6為半徑作⊙P,則下列判斷正確的有________. ①點(diǎn)O在⊙P外;②點(diǎn)M在⊙P上;③x軸與⊙P相離;④y軸與⊙P相切.
8、 【解后感悟】直線和圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r. 1. (1)(2015·張家界)如圖,∠O=30°,C為OB上一點(diǎn),且OC=6,以點(diǎn)C為圓心,半徑為3的圓與OA的位置關(guān)系是( ) A.相離 B.相交 C.相切 D.以上三種情況均有可能 (2)(2017·鎮(zhèn)江模擬)已知⊙O的半徑r=3,設(shè)圓心O到一條直線的距離為d,圓上到這條直線的距離為2的點(diǎn)的個(gè)數(shù)為m,給出下列命題: ①若d>5,則m=0;②若d=5,則m=1;③
9、若1<d<5,則m=3;④若d=1,則m=2;⑤若d<1,則m=4. 其中正確命題的個(gè)數(shù)是( ) A.1 B.2 C.3 D.5 類型二 圓的切線性質(zhì)的運(yùn)用 (2015·銅仁)如圖,已知三角形ABC的邊AB是⊙O的切線,切點(diǎn)為B.AC經(jīng)過圓心O并與圓相交于點(diǎn)D、C,過C作直線CE⊥AB,交AB的延長(zhǎng)線于點(diǎn)E. (1)求證:CB平分∠ACE; (2)若BE=3,CE=4,求⊙O的半徑. 【解后感悟】本題運(yùn)用了切線的性質(zhì),勾股定理,相似三角形的判定和性質(zhì),圓周角
10、定理,平行線的判定和性質(zhì),連結(jié)切點(diǎn)和圓心構(gòu)造垂直或直角三角形是進(jìn)行有關(guān)證明和計(jì)算的常用方法,正確的作出輔助線是解題關(guān)鍵. 2.(1)(2015·瀘州)如圖,PA、PB分別與⊙O相切于A、B兩點(diǎn),若∠C=65°,則∠P的度數(shù)為( ) A.65° B.130° C.50° D.100° (2)(2016·隨州)如圖1,PT與⊙O1相切于點(diǎn)T,PAB與⊙O1相交于A、B兩點(diǎn),可證明△PTA∽△PBT,從而有PT2=PA·PB.請(qǐng)應(yīng)用以上結(jié)論解決下列問題:如圖2,PAB、PCD分別與⊙O2相交于A、B、C、D四點(diǎn),已知PA=2,PB=7,PC=3,則CD= .
11、 類型三 圓的切線判定的運(yùn)用 (1)(2017·沈陽模擬)如圖,AB是⊙O的直徑,BC交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E,要使DE是⊙O的切線,需添加的條件是________________.(不添加其他字母和線條) (2) (2017·杭州市西湖區(qū)模擬)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交AC于E,交BC于D,DF⊥AC于F.給出以下五個(gè)結(jié)論:①BD=DC;②CF=EF;③=;④∠A=2∠FDC;⑤DF是⊙O的切線.其中正確結(jié)論的序號(hào)是________. 【解后感悟】(1)解決本類題目可以是將最終的結(jié)論當(dāng)做條件,而答案就是使得條件成立的結(jié)論;(2)解答此題的關(guān)鍵是兩
12、個(gè)基本圖形的公共部分(即點(diǎn)D,E和直徑AB)的運(yùn)用;在涉及切線問題時(shí),常連結(jié)過切點(diǎn)的半徑,要想證明一條直線是圓的切線,常常需要作輔助線.如果已知直線過圓上某一點(diǎn),則作出過這一點(diǎn)的半徑,證明直線垂直于半徑;如果直線與圓的公共點(diǎn)沒有確定,則應(yīng)過圓心作直線的垂線,證明圓心到直線的距離等于半徑. 3.(2017·黃石模擬)已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E. (1)請(qǐng)說明DE是⊙O的切線; (2)若∠B=30°,AB=8,求DE的長(zhǎng). 類型四 三角形的內(nèi)切圓問題 (1)如圖,圓D是△AB
13、C的內(nèi)切圓,∠A=40°,則∠BDC的度數(shù)是________. (2)在△ABC中,已知∠C=90°,BC=3,AC=4,則它的內(nèi)切圓半徑是________. 【解后感悟】①求證三角形內(nèi)切圓問題時(shí),常用到面積法:S△ABC=(a+b+c)r,其中r為△ABC的內(nèi)切圓半徑,a,b,c為△ABC的三條邊的長(zhǎng)度; ②已知直角三角形的三邊長(zhǎng)為a,b,c(其中c為斜邊),則其內(nèi)切圓半徑r=; ③解三角形與圓相切問題時(shí),常利用切線長(zhǎng)定理及勾股定理等列方程(組)來求半徑的長(zhǎng). 4.(1)如圖,在Rt△ABC中,∠C=90°,∠B=60°,內(nèi)切圓O與邊AB、BC、CA分別相切于點(diǎn)D、E、
14、F,則∠DEF為( ) A.55° B.60° C.75° D.80° (2)(2015·濱州)若等腰直角三角形的外接圓半徑的長(zhǎng)為2,則其內(nèi)切圓半徑的長(zhǎng)為( ) A. B.2-2 C.2- D.-2 (3)(2015·遵義)將正方形ABCD繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)30°,得正方形AB1C1D1,B1C1交CD于點(diǎn)E,AB=,則四邊形AB1ED的內(nèi)切圓半徑為( ) A. B.
15、 C. D. 類型五 圓的綜合性問題 如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦AD∥OC,直線CD交BA的延長(zhǎng)線于點(diǎn)E. (1)求證:直線CD是⊙O的切線; (2)若DE=2BC,求AD∶OC的值. 【解后感悟】此題運(yùn)用切線的判定、全等三角形的判定與性質(zhì)以及相似三角形的判定與性質(zhì)解題.注意掌握輔助線的作法,數(shù)形結(jié)合思想的應(yīng)用. 5. (1)(2017·永新模擬)如圖,以點(diǎn)P(2,0)為圓心,為半徑作圓,點(diǎn)M(a,b)是⊙P上的一點(diǎn),則的最大值是____________________. (2) (2017·衢州)如圖
16、,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(-1,0),半徑為1,點(diǎn)P為直線y=-x+3上的動(dòng)點(diǎn),過點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長(zhǎng)PQ的最小值是____________________. 【探索研究題】 (2015·河池)我們將在直角坐標(biāo)系中圓心坐標(biāo)和半徑均為整數(shù)的圓稱為“整圓”.如圖,直線l:y=kx+4與x軸、y軸分別交于A、B,∠OAB=30°,點(diǎn)P在x軸上,⊙P與l相切,當(dāng)P在線段OA上運(yùn)動(dòng)時(shí),使得⊙P成為整圓的點(diǎn)P的個(gè)數(shù)是( ) A.6 B.8 C.10 D.12 【方法與對(duì)
17、策】通過問題中信息,理解整圓的概念,構(gòu)建半徑與點(diǎn)P橫坐標(biāo)之間的關(guān)系,建模為二元一次方程整數(shù)解的問題.這類定義型閱讀理解題是中考熱點(diǎn)題型. 【直線與圓的位置關(guān)系的陷阱】 已知⊙O的半徑為2,直線l上有一點(diǎn)P滿足PO=2,則直線l與⊙O的位置關(guān)系是( ) A.相切 B.相離 C.相離或相切 D.相切或相交 參考答案 第23講 直線與圓的位置關(guān)系 【考點(diǎn)概要】 2.唯一 半徑 垂直于 一個(gè) 半徑 半徑 切點(diǎn) 兩 相等 平分 3.同一 外接圓 外心 三個(gè)頂點(diǎn) 內(nèi)切圓 內(nèi)心 三邊 【考題體驗(yàn)】 1.A 2.C 3.B 4
18、.50° 【知識(shí)引擎】 【解析】(1)當(dāng)⊙P位于y軸的左側(cè)且與y軸相切時(shí),平移的距離為1;當(dāng)⊙P位于y軸的右側(cè)且與y軸相切時(shí),平移的距離為5.∴平移的距離為1或5. (2)直線與圓的位置關(guān)系;切線的判定和性質(zhì). 【例題精析】 例1?、佗邰堋? 例2 (1)證明:如圖1,連結(jié)OB,∵AB是⊙O的切線,∴OB⊥AB,∵CE⊥AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE; (2)如圖2,連結(jié)BD,∵CE⊥AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直徑,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△BEC,∴=,∴BC2=C
19、D·CE,∴CD==,∴OC=CD=,∴⊙O的半徑=. 例3 (1)D為BC中點(diǎn)(答案不唯一); (2)①②④⑤ 例4 (1)110°; (2)1 例5 (1)證明:連結(jié)DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵點(diǎn)D在⊙O上,∴CD是⊙O的切線. (2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴==. 【變式拓展】 1.
20、 (1)C (2)C 2.(1)C (2) 3.(1)連結(jié)OD,則OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∴∠ODE=∠DEC=90°.∴DE是⊙O的切線. (2)連結(jié)AD,∵AB是⊙O的直徑,∴∠ADB=90°.∴BD=AB·cosB=8×=4.又∵AB=AC,∴CD=BD=4,∠C=∠B=30°.∴DE=CD=2. 4. (1)C (2)B (3)B 5.(1) (2)2 【熱點(diǎn)題型】 【分析與解】∵直線l:y=kx+4與x軸、y軸分別交于A、B,∴B(0,4),∴OB=4,在Rt△AOB中,∠OAB=30°,∴OA=OB=×4=12,∵⊙P與l相切,設(shè)切點(diǎn)為M,連結(jié)PM,則PM⊥AB,∴PM=PA,設(shè)P(x,0),∴PA=12-x,∴⊙P的半徑PM=PA=6-x,∵x為整數(shù),PM為整數(shù),∴x可以取0,2,4,6,8,10,6個(gè)數(shù),∴使得⊙P成為整圓的點(diǎn)P個(gè)數(shù)是6.故選A. 【錯(cuò)誤警示】當(dāng)OP垂直于直線l時(shí),即圓心O到直線l的距離d=2=r,⊙O與直線l相切;當(dāng)OP不垂直于直線l時(shí),即圓心O到直線l的距離d<2=r,⊙O與直線l相交,故直線l與⊙O的位置關(guān)系是相切或相交.故選D. 11
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 統(tǒng)編版選擇性必修下冊(cè)《孔雀東南飛》課件
- 案例分析PPT模版
- 民生附加醫(yī)樂保醫(yī)療保險(xiǎn)產(chǎn)品主要特色基本形態(tài)投保案例增值服務(wù)介紹課件
- 乳腺癌新輔助化療共識(shí)與進(jìn)展課件
- 2021 2022學(xué)年新教材高中物理第2章勻變速直線運(yùn)動(dòng)的研究4自由落體運(yùn)動(dòng)ppt課件新人教版必修第一冊(cè)
- 《公司金融》資本預(yù)算
- 工程安全與結(jié)構(gòu)健康監(jiān)測(cè)
- 防水閘門制造取費(fèi)、工期、質(zhì)量保證工作匯報(bào)
- 水處理技術(shù)基礎(chǔ)
- 腘窩囊腫綜述中英文對(duì)照-課件
- 平面構(gòu)成基本形
- 奧運(yùn)福娃簡(jiǎn)介
- 課題2元素 (3)
- “相約中秋”流程
- 勞動(dòng)爭(zhēng)議處理課件