《2021-2022年三年級數(shù)學 奧數(shù)講座 一筆畫(二)》由會員分享,可在線閱讀,更多相關(guān)《2021-2022年三年級數(shù)學 奧數(shù)講座 一筆畫(二)(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2021-2022年三年級數(shù)學 奧數(shù)講座 一筆畫(二)
利用一筆畫原理,我們可以解決許多有趣的實際問題。
例1 下圖是某展覽館的平面圖,一個參觀者能否不重復地穿過每一扇門?如果不能,請說明理由。如果能,應(yīng)從哪開始走?
分析與解:我們將每個展室看成一個點,室外看成點E,將每扇門看成一條線段,兩個展室間有門相通表示兩個點間有線段相連,于是得到右圖。能否不重復地穿過每扇門的問題,變?yōu)橛覉D是否一筆畫問題。
下圖中只有A,D兩個奇點,是一筆畫,所以答案是肯定的,應(yīng)該從A或D展室開始走。
例1的關(guān)鍵是如何把一個實際問題變?yōu)榕袛嗍欠褚还P畫問題,就像歐拉在解決哥尼斯堡七橋問題時做的那
2、樣。
例2 一個郵遞員投遞信件要走的街道如下圖所示,圖中的數(shù)字表示各條街道的千米數(shù),他從郵局出發(fā),要走遍各街道,最后回到郵局。怎樣走才能使所走的行程最短?全程多少千米?
分析與解:圖中共有8個奇點,必須在8個奇點間添加4條線,才能消除所有奇點,成為能從郵局出發(fā)最后返回郵局的一筆畫。在距離最近的兩個奇點間添加一條連線,如左上圖中虛線所示,共添加4條連線,這4條連線表示要重復走的路,顯然,這樣重復走的路程最短,全程30千米。走法參考右上圖(走法不唯一)。
例3下圖中每個小正方形的邊長都是100米。小明沿線段從A點到B點,不許走重復路,他最多能走多少米?
分析與解:這道題大多數(shù)同學
3、
都采用試畫的方法,實際上可以用一筆畫原理求解。首先,圖中有8個奇點,在8個奇點之間至少要去掉4條線段,才能使這8個奇點變成偶點;其次,從A點出發(fā)到B點,A,B兩點必須是奇點,現(xiàn)在A,B都是偶點,必須在與A,B連接的線段中各去掉1條線段,使A,B成為奇點。所以至少要去掉6條線段,也就是最多能走1800米,走法如下圖?;?
例2與例3的圖中各有8個奇點,都是通過減少奇點個數(shù),將多筆畫變成一筆畫的問題,但它們采用的方法卻完全不同。因為例2中只要求走遍所有的線段,沒有要求不能重復,所以通過添加線段的方法(實際是重復走添加線段的這段路),將奇點變?yōu)榕键c,使多筆畫變成一筆畫。而在例3中,要求不能
4、走重復的路,所以不能添加線段,只能通過減少線段的方法,將奇點變?yōu)榕键c,使多筆畫變成一筆畫。區(qū)別就在于能否重復走!能“重復”就“添線”,不能“重復”就“減線”。
例4在六面體的頂點B和E處各有一只螞蟻(見下圖),它們比賽看誰能爬過所有的棱線,最終到達終點D。已知它們的爬速相同,哪只螞蟻能獲勝?
分析與解:許多同學看不出這
是一筆畫問題,但利用一筆畫的知識,能非常巧妙地解答這道題。這道題只要求爬過所有的棱,沒要求不能重復??墒莾芍晃浵伵浪傧嗤?,如果一只不重復地爬遍所有的棱,而另一只必須重復爬某些棱,那么前一只螞蟻爬的路程短,自然先到達D點,因而獲勝。問題變?yōu)閺腂到D與從E到D哪個是一
5、筆畫問題。圖中只有E,D兩個奇點,所以從E到D可以一筆畫出,而從B到D卻不能,因此E點的螞蟻獲勝。
?
附送:
2021-2022年三年級數(shù)學 奧數(shù)講座 一題多解
專題簡析:
一題多解是指從不同角度,運用不同的思維方式來解答同一道題的思考方法,經(jīng)常進行一題多解的訓練,可以鍛煉我們的思維,使頭腦更靈活。
在進行一題多解的練習時,要根據(jù)題目的具體情況,首先確定思維的起點,然后沿著不同的思考方向,就能找到不同的解題方法。在尋求一題多解時,還應(yīng)該特別選擇解決問題的簡便方法和最佳途徑。
例題1 有一個正方形池塘,四周種樹,每邊種8棵,每個頂點種一棵,每兩棵樹之間距離都相等。四周一共
6、種了多少棵樹?
思路導航:
方法一:根據(jù)條件可知,每邊種8棵,4邊就是8×4=32棵,但每邊起點一棵算了兩次,一共多算了4棵,所以四周一共種了32-4=28棵樹。
方法二:我們可以先數(shù)正方形的一組對邊,包括兩個頂點的,每邊種8棵;再數(shù)另一組對邊的,不數(shù)兩個頂點的,每邊種8-2=6棵。所以,一共有:8×2+6×2=28棵。
方法三:把正方形四邊拉直,每邊種8棵,就是把每邊分成了7等份,4邊共分成了28等份,每一等份對應(yīng)一棵樹,所以共有28棵樹。
練 習 一
1.在一個正方形的菜地四周圍籬笆,每個頂點插一根,每兩根籬笆之間的距離相等,每邊有12根籬笆,四周一共圍了多少根籬笆?
2
7、.有一個三角形花圃周圍種松樹,每個頂點種一棵,每邊種10棵,每兩棵之間距離相等,四周一共種了多少棵?
3.少先隊員表演節(jié)目,圍成一個正方形,每個頂點站1人,已知每邊站6人,一共站了多少人?
例題2 一瓶花生油連瓶一共重800克,吃掉一半油,連瓶一起稱,還剩550克。瓶里原有多少克油?空瓶重多少克?
思路導航:
方法一:根據(jù)條件可知,花生油和瓶的重量油800克變?yōu)?50克,是因為吃掉了一半油,半瓶油的重量是800-550=250克,一瓶油的重量是250×2=500克,油瓶的重量是800-500=300克。
方法二:根據(jù)條件可知,半瓶油連瓶重550克,從800克中減去半瓶油的重量800
8、-550=250克,550-250=300克即為瓶的重量,油的重量為:800-300=500克。
方法三:根據(jù)“半瓶油連瓶共重550克”可求出一瓶油和兩個瓶共重550×2=1100克,所以瓶重:1100-800=300克,油重800-300=500克。
練 習 二
1.一袋大米,連袋共重50千克。吃掉一半后,連袋剩下27千克。大米重多少千克?袋重多少千克?
2.一筐蘋果連筐共重85千克,倒去一半后,連筐共重45千克。蘋果和筐各重多少千克?
3.一筐橘子,連筐共重45千克。先拿一半送給幼兒園,再拿出剩下的一半給敬老院的老人,余下的橘子連筐重15千克。橘子和筐各重多少千克?
例題3
9、 甲班有42人,乙班有35人,開學時來了25位新同學,怎樣分才能使兩班學生人數(shù)相等?
思路導航:
方法一:根據(jù)已知條件,我們可求出轉(zhuǎn)來了25位同學后的總?cè)藬?shù)為:42+35+25=102人,再求出平均每班為102÷2=51人,再根據(jù)甲班乙班原有的人數(shù)分別求出甲班分了:51-42=9人,乙班分了:51-35=16人。
方法二:根據(jù)已知條件,我們可先求出乙班比甲班少42-35=7人,那么25位新同學中我們可先分7人給乙班,使乙班和甲班一樣多,這樣就剩下25-7=18人。剩下的18人,我們再平均分給兩班,每班各分18÷2=9人。
所以,甲班共分了9人,乙班共分了9+7=16人。
練 習
10、 三
1.小明有18枝鉛筆,小紅有15枝鉛筆,媽媽又買來13枝鉛筆,怎樣分,才能使兩人鉛筆一樣多?
2.甲倉庫有糧食420噸,乙倉庫有糧食370噸,又運來糧食180噸,怎樣分,才能使兩倉庫糧食一樣多?
3.有甲、乙兩筐蘋果,甲筐有蘋果25千克,乙筐有蘋果18千克,又買來13千克蘋果,怎樣分才能使兩筐蘋果一樣多?
例題4 從小青家經(jīng)小紅和小強家到學校有450米,從小青家到小強家有390米,從學校到小紅家有320米。從小紅家到小強家有多少米?
思路導航:根據(jù)題意,畫出線段圖。
方法一:從小青家到學校有450米,到小強家有390米,說明小強家到學校有450-390=60米,又因為小
11、紅家到學校有320米,所以小紅家到小強家有320-60=260米。
方法二:根據(jù)上面線段圖和已知條件可知:
從小青家到學校有450米,從學校到小紅家有320米,說明小青家到小紅家有450-320=130米。又因為小青家到小強家有390米,所以小紅家到小強家有390-320=260米。
方法三:根據(jù)上面線段圖和已知條件可知:
從小青家到小強家有390米,從學校到小紅家有320米。我們可求出小青家到學校與小紅家到小強家的距離為390+320=710米,從中減去小青家到學校的距離450米,就是小紅家到小強家的距離:710-450=260米。
練 習 四
1.亮亮經(jīng)過小明、小丹家到電影
12、院共500米,從亮亮家到小丹家是270米,從小明家到電影院是410米。從小明家到小丹家多少米?
2.小敏外出旅游乘車回家,從汽車站經(jīng)醫(yī)院、商店到家共1000米,從汽車站到商店是620米,從醫(yī)院到家是690米。那么醫(yī)院到商店多少米?
3.有兩塊木板,一塊長70厘米,另一塊長80厘米。如果把兩塊木板重疊后釘成一塊木板,全長130厘米。重疊部分長多少厘米?
例題5 小青以均勻的速度在公路上散步,從第1根電線桿走到第10根電線桿共用了12分鐘,如果她走24分鐘,應(yīng)走到第幾根電線桿?
思路導航:
方法一:根據(jù)題意,畫出線段圖。
從圖上可以看出,由于每個間隔所用的時間無法直接求出,因而只
13、有從時間關(guān)系上加以考慮,24分鐘正好是12分鐘的2倍,就相當于小青先走12分鐘,又繼續(xù)走12分鐘。注意第10根(圖中A處)既是前12分鐘的終點,又是后12分鐘的起點,顯然被重復算了一次。因此,小紅如果走24分鐘,應(yīng)走到10×2-1=19根電線桿處。
方法二:根據(jù)題意,畫出線段圖。
由圖可知,12分鐘走到第10根電線桿,共走了10-1=9個間隔,24分鐘正好是12分鐘的2倍,那么24分鐘就走了9×2=18個間隔。
要求應(yīng)走到第幾根電線桿,我們要加上起點B點那根電線桿,因而應(yīng)走到第18+1=19根電線桿。
練 習 五
1.玲玲上樓,從一樓到三樓用6分鐘,如果她走12分鐘,應(yīng)走到幾樓?
2.路的一旁插著彩旗,如果從第一面旗走到第4面旗要用12分鐘,那么走24分鐘能從第一面走到第幾面?
3.小芳和媽媽用均勻的速度在馬路上散步,他們從第1根電線桿走到第12根電線桿,整整用了8分鐘。仍用這樣的速度,再走8分鐘,他們會走到第幾根電線桿?