《福建省邵武第七中學(xué)七年級(jí)數(shù)學(xué) 《三角形的內(nèi)角》課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《福建省邵武第七中學(xué)七年級(jí)數(shù)學(xué) 《三角形的內(nèi)角》課件(22頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、三角形的內(nèi)角三角形的內(nèi)角復(fù)復(fù)習(xí)習(xí)回回顧顧1、什么是三角形、什么是三角形?2、如何表示一個(gè)三角形、如何表示一個(gè)三角形?3、三角形三邊有什么關(guān)系、三角形三邊有什么關(guān)系?CBA由不在同一條直線上的三由不在同一條直線上的三條線段首尾順次連結(jié)所組條線段首尾順次連結(jié)所組成的圖形,叫做三角形成的圖形,叫做三角形。記作記作“ ABC” AC+BCABBC-AC 在一個(gè)直角三角形里住著三個(gè)內(nèi)角,平在一個(gè)直角三角形里住著三個(gè)內(nèi)角,平時(shí),它們?nèi)值芊浅F(tuán)結(jié)??墒怯幸惶?,老時(shí),它們?nèi)值芊浅F(tuán)結(jié)??墒怯幸惶欤隙蝗徊桓吲d,發(fā)起脾氣來(lái),它指著老大說(shuō):二突然不高興,發(fā)起脾氣來(lái),它指著老大說(shuō):“你憑什么度數(shù)最大,我也要和
2、你一樣你憑什么度數(shù)最大,我也要和你一樣大!大!”“”“不行?。〔恍邪?!”老大說(shuō):老大說(shuō):“這是不可能這是不可能的,否則,我們這個(gè)家就再也圍不起來(lái)的,否則,我們這個(gè)家就再也圍不起來(lái)了了”“”“為什么?為什么?” 老二很納悶。老二很納悶。內(nèi)角三兄弟之爭(zhēng)內(nèi)角三兄弟之爭(zhēng)創(chuàng)設(shè)情境創(chuàng)設(shè)情境創(chuàng)創(chuàng)設(shè)設(shè)情情境境同學(xué)們,你們知道其中的道理嗎?同學(xué)們,你們知道其中的道理嗎?猜猜一一猜猜三角形的三個(gè)內(nèi)角有什么關(guān)系三角形的三個(gè)內(nèi)角有什么關(guān)系?你有什么辦法可以驗(yàn)證呢?你有什么辦法可以驗(yàn)證呢? 任何一個(gè)三角形有內(nèi)角和都等于任何一個(gè)三角形有內(nèi)角和都等于180度度嗎嗎?量一量拼一拼三角形的內(nèi)角和等于三角形的內(nèi)角和等于180度度
3、.試試一一試試把三個(gè)角拼在一起試試看?把三個(gè)角拼在一起試試看? 方法一方法二從剛才拼角的過(guò)程從剛才拼角的過(guò)程你能想出你能想出證明證明的的辦法嗎辦法嗎?CBA三角形的內(nèi)角和等于三角形的內(nèi)角和等于1800.已知:已知:求證:求證:A+B+C=180證明:證明:過(guò)過(guò)A作作EFBC, B=2(兩直線平行兩直線平行, ,內(nèi)錯(cuò)角相等內(nèi)錯(cuò)角相等) ) C=1(兩直線平行兩直線平行, ,內(nèi)錯(cuò)角相等內(nèi)錯(cuò)角相等) ) 又又2+1+BAC=180B+C+BAC=180F21ECBA三角形的內(nèi)角和等于三角形的內(nèi)角和等于1800.方法一方法一:證明:證明:延長(zhǎng)延長(zhǎng)BCBC到到D D,過(guò),過(guò)C C作作CEBA, A=1
4、A=1 ( (兩直線平行,內(nèi)錯(cuò)角相等兩直線平行,內(nèi)錯(cuò)角相等) )B=2B=2( (兩直線平行,同位角相等兩直線平行,同位角相等) )又又1+2+ACB=1801+2+ACB=180A+B+ACB=180A+B+ACB=18021EDCBA三角形的內(nèi)角和等于三角形的內(nèi)角和等于1800.方法二:方法二:證明:證明:過(guò)過(guò)A作作AEBC,B=BAE (兩直線平行兩直線平行,內(nèi)錯(cuò)角相等內(nèi)錯(cuò)角相等)EAB+BAC+C=180(兩直線平行兩直線平行,同旁內(nèi)角互補(bǔ)同旁內(nèi)角互補(bǔ))B+C+BAC=180CBEA三角形的內(nèi)角和等于三角形的內(nèi)角和等于1800.方法三:方法三:思路總結(jié)思路總結(jié) 為了證明三個(gè)角的和為為了
5、證明三個(gè)角的和為1800,轉(zhuǎn)化轉(zhuǎn)化為一個(gè)平角或同旁為一個(gè)平角或同旁內(nèi)角互補(bǔ)內(nèi)角互補(bǔ),這種這種轉(zhuǎn)化思想轉(zhuǎn)化思想是數(shù)是數(shù)學(xué)中的常用方法學(xué)中的常用方法.2 (1)在)在ABC中,中,A=5, B=43 則則A CB= . _ (2)在在ABC中中,A=80,B=C , 則則C_度。度。 ()在直角三角形()在直角三角形ABC中中,一個(gè)銳角為一個(gè)銳角為40 ,則另一個(gè)銳則另一個(gè)銳角是角是_度。度。CBA50 50(4) 在在ABC中,中, A :B:C=2:3:4,求求A 、B、 C的度數(shù)。的度數(shù)。解:設(shè)每一份角為解:設(shè)每一份角為X度,則度,則A2X 度、度、B=3X度、度、 C=4X度,由三角形內(nèi)角
6、和定理,度,由三角形內(nèi)角和定理,可得:可得: 2X+3X+4X=180 解之,得解之,得 X=202X=220=40, 3X=320=60, 4X=420=80答:答: A 為為40度,度,B為為60度、度、 C為為80度度(1)一個(gè)三角形中最多有一個(gè)三角形中最多有 個(gè)直角?為什嗎?個(gè)直角?為什嗎?(2)一個(gè)三角形中最多有)一個(gè)三角形中最多有 個(gè)鈍角?為什嗎?個(gè)鈍角?為什嗎?(3)一個(gè)三角形中至少有)一個(gè)三角形中至少有 個(gè)銳角?為什嗎?個(gè)銳角?為什嗎?(4)任意)任意 一個(gè)三角形中,最大的一個(gè)角的度數(shù)至一個(gè)三角形中,最大的一個(gè)角的度數(shù)至少為少為 .602111、如圖、如圖,某同學(xué)把一塊三角形的
7、玻某同學(xué)把一塊三角形的玻璃打碎成三片璃打碎成三片,現(xiàn)在他要到玻璃店去現(xiàn)在他要到玻璃店去配一塊形狀完全一配一塊形狀完全一 樣的玻璃樣的玻璃,那么那么最省事的辦法是最省事的辦法是 ( )(A)帶帶去去(B)帶帶去去(C)帶帶去去(D)帶帶和和去去C2、在直角、在直角中,中,=度度,是高,是高,找出圖中相等的角找出圖中相等的角BCACBA、在、在ABC中,中,A=, B和和 C的平分線相交于,的平分線相交于,()求()求的度數(shù)。的度數(shù)。()() 將將A換個(gè)度數(shù),那求出是多少?你能換個(gè)度數(shù),那求出是多少?你能體會(huì)體會(huì)A和和有什么關(guān)系嗎?有什么關(guān)系嗎? +這節(jié)課你有那些收獲這節(jié)課你有那些收獲?這節(jié)課你學(xué)
8、到了什么?為什么要證明?你掌握了幾種內(nèi)角和的證明方法?你會(huì)應(yīng)用內(nèi)角和定理去解決一些問(wèn)題嗎? 作業(yè)課本76頁(yè)第一題的1,2,3小題第三題 在這里,為了在這里,為了證明的證明的需要需要,在原來(lái)的圖形上添在原來(lái)的圖形上添畫(huà)的線叫做畫(huà)的線叫做輔助線輔助線。在平在平面幾何里,面幾何里,輔助線通常畫(huà)輔助線通常畫(huà)成成虛線虛線。為什么要證明 按照上面的方法按照上面的方法,已經(jīng)可以驗(yàn)證三角形的已經(jīng)可以驗(yàn)證三角形的內(nèi)角和是內(nèi)角和是180,但是由于形狀不同的三角形有但是由于形狀不同的三角形有無(wú)數(shù)無(wú)數(shù)多個(gè)多個(gè),我們不可能通過(guò)上面的辦法一一驗(yàn)證我們不可能通過(guò)上面的辦法一一驗(yàn)證.再加上其驗(yàn)證過(guò)程中可能存在再加上其驗(yàn)證過(guò)程中可能存在誤差誤差,不能保證其不能保證其有效性有效性.所以我們需要一種能說(shuō)明任意一個(gè)三角所以我們需要一種能說(shuō)明任意一個(gè)三角形的內(nèi)角和等于形的內(nèi)角和等于180的方法的方法.這個(gè)方法就是這個(gè)方法就是證明證明. 一個(gè)命題是否正確一個(gè)命題是否正確,需要經(jīng)過(guò)使人信服的推理需要經(jīng)過(guò)使人信服的推理論證才能得出結(jié)論論證才能得出結(jié)論.而而證明證明是是由由命題的命題的題設(shè)題設(shè)(已已知知)出發(fā)出發(fā),經(jīng)過(guò)嚴(yán)密的推理經(jīng)過(guò)嚴(yán)密的推理,最后最后推出結(jié)論推出結(jié)論(求證求證)正確正確的的過(guò)程過(guò)程.