卡板加工工藝和夾具設(shè)計(jì)【含7張cad圖紙+文檔全套資料】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問咨詢QQ:414951605或者1304139763 ========================
畢業(yè)設(shè)計(jì)論文
卡板加工工藝和夾具設(shè)計(jì)
所在學(xué)院
專 業(yè)
班 級(jí)
姓 名
學(xué) 號(hào)
指導(dǎo)老師
年 月 日
摘 要
在工藝設(shè)計(jì)中要首先對(duì)零件進(jìn)行分析,了解零件的工藝再設(shè)計(jì)出毛坯的結(jié)構(gòu),并選擇好零件的加工基準(zhǔn),設(shè)計(jì)出零件的工藝路線;接著對(duì)零件各個(gè)工步的工序進(jìn)行尺寸計(jì)算,關(guān)鍵是決定出各個(gè)工序的工藝裝備及切削用量;然后進(jìn)行專用夾具的設(shè)計(jì),選擇設(shè)計(jì)出夾具的各個(gè)組成部件,如定位元件、夾緊元件、引導(dǎo)元件、夾具體與機(jī)床的連接部件以及其它部件;計(jì)算出夾具定位時(shí)產(chǎn)生的定位誤差,分析夾具結(jié)構(gòu)的合理性與不足之處,并在以后設(shè)計(jì)中注意改進(jìn)。
關(guān)鍵詞:工藝,工序,切削用量,夾緊,定位,誤差
23
Abstract
In the process of design should first of all parts to analyze, understand parts of the process and then design a blank structure, and choose the good parts of the machining datum, designs the process routes of the parts; then the parts each step process dimension calculation, the key is to determine the process equipment and cutting the amount of each working procedure design; then a special fixture, fixture for the various components of a design, such as the connecting part positioning device, clamping element, a guide element, clamp and the machine tool and other components; the positioning error caused calculate fixture when positioning, analysis of the rationality and deficiency of fixture structure, pay attention to improving and will design in.
Keywords: process, process, cutting, clamping, positioning
目 錄
摘 要 II
Abstract III
第1章 緒論 1
第2章 加工工藝規(guī)程設(shè)計(jì) 2
2.1 零件的分析 2
2.1.1 零件的作用 2
2.1.2 零件的工藝分析 3
2.2 卡板零件加工的主要問題和工藝過程設(shè)計(jì)所應(yīng)采取的相應(yīng)措施 3
2.2.1 孔和平面的加工順序 3
2.2.2 孔系加工方案選擇 3
2.3 卡板零件加工定位基準(zhǔn)的選擇 3
2.3.1 粗基準(zhǔn)的選擇 3
2.3.2 精基準(zhǔn)的選擇 4
2.4 卡板零件加工主要工序安排 4
2.5 機(jī)械加工余量、工序尺寸及毛坯尺寸的確定 6
2.6確定切削用量及基本工時(shí)(機(jī)動(dòng)時(shí)間) 6
第3章 鉆孔專用夾具設(shè)計(jì) 14
3.1問題的指出 14
3.2 夾具設(shè)計(jì) 14
3.2.1概述 14
3.2.2方案設(shè)計(jì) 14
3.2.3定位基準(zhǔn)的選擇 14
3.2.4切削力和夾緊力的計(jì)算 15
3.3切削力和夾緊力計(jì)算 15
3.4夾緊力的計(jì)算 16
3.5定位誤差分析 17
3.6零、部件的設(shè)計(jì)與選用 17
3.7確定夾具體結(jié)構(gòu)尺寸和總體結(jié)構(gòu) 20
總 結(jié) 22
參 考 文 獻(xiàn) 23
致 謝 24
第1章 緒論
學(xué)生可以通過設(shè)計(jì)綜合應(yīng)用了過去的教訓(xùn)基礎(chǔ)能力的設(shè)計(jì)和施工機(jī)械制造和畢業(yè)設(shè)計(jì)工作,對(duì)綜合訓(xùn)練和要求學(xué)生用的集成方案和前提理論和實(shí)踐知識(shí)的制造過程設(shè)計(jì)的零件。其目標(biāo)如下:
解決問題的能力的加工工藝文化
(1)畢業(yè)設(shè)計(jì)、應(yīng)用技術(shù)基礎(chǔ)課程的理論基礎(chǔ)和實(shí)踐機(jī)在生產(chǎn)實(shí)踐中,二次妥善解決工件在加工過程中,和定位的方法行程大小的測(cè)定方法等,以保證零件的加工質(zhì)量,設(shè)計(jì)能力的介質(zhì)復(fù)雜零件的程度。
(2)學(xué)生熟悉和練習(xí)手冊(cè)、規(guī)范和技術(shù)能力的圖形和其他信息。
(3)培養(yǎng)學(xué)生繪畫、制圖、基本技能的應(yīng)用和編制技術(shù)文件等。
水平有限,設(shè)計(jì)有缺點(diǎn)的批評(píng)中的錯(cuò)誤,請(qǐng)教師。
第2章 加工工藝規(guī)程設(shè)計(jì)
2.1 零件的分析
2.1.1 零件的作用
題目給出的零件是卡板零件??ò辶慵闹饕饔弥g的中心距及平行度,并保證正確安裝。因此卡板零件的加工質(zhì)量,不但直接影響的裝配精度和運(yùn)動(dòng)精度,而且還會(huì)影響工作精度、使用性能和壽命。
圖2-1 卡板工件圖
2.1.2 零件的工藝分析
由卡板零件圖可知??ò辶慵且粋€(gè)卡板零件,它的外表面上有4個(gè)平面需要進(jìn)行加工。支承孔系在前后端面上。此外各表面上還需加工一系列孔。因此可將其分為三組加工表面。它們相互間有一定的位置要求。現(xiàn)分析如下:
(1)以底面為主要加工表面的加工面。這一組加工表面包括:底面的銑削加工;其中表面粗糙度要求為,
(2)以φ4-Φ3.5mm的孔孔為主要加工表面的加工面。
(3)以M4螺紋的孔為主要加工面。
2.2 卡板零件加工的主要問題和工藝過程設(shè)計(jì)所應(yīng)采取的相應(yīng)措施
從以上分析明白。該卡板的主要零部件加工方面和洞平面系。一般來說,保證平面的加工精度保證更容易洞系的加工精度。因此,卡板零部件來說,加工中的主要問題是保證孔尺寸精度及位置精度處理好,孔和平面之間的相互關(guān)系。
為生產(chǎn)量很大。如何滿足生產(chǎn)性的要求加工中的主要考慮因素。
2.2.1 孔和平面的加工順序
卡板卡板零件類應(yīng)遵循首先零部件的加工方面后孔的原則:即板上基準(zhǔn)先加工零件平面,基準(zhǔn)平面定位加工其他的平面。并且洞系加工??ò辶悴考募庸ぷ匀粦?yīng)服從這個(gè)原則。那是平面的面積大,用平面位置確保定位信賴夾緊堅(jiān)固,所以容易孔的加工精度保證。其次,先加工平面前方切掉鑄件表面的凹凸??椎募庸ぞ?,為了提高創(chuàng)造條件,容易刀和調(diào)整對(duì)有利刀具保護(hù)。
卡板零部件的加工流程應(yīng)遵循粗加工的原則,離開,孔的加工和平面明確區(qū)分粗加工完成的階段穴系加工精度保證。
2.2.2 孔系加工方案選擇
卡板的零部件的加工程序孔系,應(yīng)該選擇孔加工精度要求,可以滿足系的加工方法及設(shè)備。外加工精度加工效率兩方面考慮以外也適當(dāng)考慮經(jīng)濟(jì)因素。滿足的精度要求和生產(chǎn)性的條件下,應(yīng)該選擇價(jià)格最底的機(jī)床。
2.3 卡板零件加工定位基準(zhǔn)的選擇
2.3.1 粗基準(zhǔn)的選擇
粗基準(zhǔn)以下要求滿足:
(1)保證各重要孔的加工余量均一,
(2)保證卡板零部件的零件和箱子的墻壁上有一定的間隙。
上述的要求,滿足應(yīng)該選擇主要支撐孔作為主要標(biāo)準(zhǔn)。即,卡板零部件輸入軸和輸出軸的支持孔粗作為標(biāo)準(zhǔn)。也就是前后端面的距離頂平面最近的孔,作為主要標(biāo)準(zhǔn)工件的4個(gè)限制的自由度,還有別的主要支撐孔定位限制第五自由度。作為基準(zhǔn)孔因?yàn)榇旨庸ぞ鶞?zhǔn)面。因此,后再精加工基準(zhǔn)定位主要支撐孔孔加工的時(shí)候,一定是均勻的余量。箱子孔的位置和墻壁的位置是同型芯鑄造。所以,孔的剩余量均勻也間接保證的孔和箱子墻的相對(duì)位置。
2.3.2 精基準(zhǔn)的選擇
保證卡板零件和孔,平面,平面圖像和平面之間的位置。精基準(zhǔn)的選擇是保證卡板零件加工過程中基本上整體統(tǒng)一基準(zhǔn)定位。從卡板零件圖分析,那頂平面和各主要支撐孔平行而且占有的面積大,精標(biāo)準(zhǔn)使用適合。但是在平面位置限制盡量工作的三個(gè)自由度,只要使用典型的一面的2孔的位置,可以滿足的方法是,全體的加工中基本上采用統(tǒng)一基準(zhǔn)定位的要求。前后的端方面,那是卡板的零部件組裝的標(biāo)準(zhǔn),它和卡板零部件的主要支撐孔系垂直。如果能用精加工基準(zhǔn)孔系,定位、夾緊或線夾結(jié)構(gòu)設(shè)計(jì)方面都有一定的困難,所以不采用。
2.4 卡板零件加工主要工序安排
關(guān)于大量生產(chǎn)的零件,一般是先加工統(tǒng)一基準(zhǔn)。基板零件加工的第一個(gè)工程加工的統(tǒng)一標(biāo)準(zhǔn)。具體的計(jì)劃首先是孔位置很粗,精密加工的山頂平面。第2的工序加工定位用的兩個(gè)工藝孔。頂從平面加工完成后一直基板零件加工完成為止,個(gè)別的工程外,定位基準(zhǔn)使用。所以,頂方面的螺絲孔加工兩工藝孔的加工工序中同時(shí)出現(xiàn)。
后工序的安排必須遵守精分和首先面后孔的原則。首先粗加工平面,粗加工孔系。螺絲下孔是多頭鉆床搭配出來,切削力較大,粗加工階段完成?;辶悴考⒕芗庸な侵慰浊昂蠖嗣?。根據(jù)上述原則也先加工平面再加工孔系,實(shí)際生產(chǎn)這樣安排不容易保證孔和互相垂直剖面。因此,實(shí)際上采用的工程程序先完成孔系,還有支持孔用膨脹軸定位加工元件端面,這樣容易保證圖紙規(guī)定的端面全跳動(dòng)公差要求。各螺絲孔的攻絲,切削力小,可以安排粗,完成的階段分散。
根據(jù)以上分析過程,現(xiàn)將卡板零件加工工藝路線確定如下:
工藝路線一:
10 開料 型材開料
20 去毛刺 去毛刺
30 銑 銑上端面及臺(tái)階面
40 銑 銑下端面
50 銑 銑四周輪廓
60 銑 銑4-R3.5槽
70 鉆 鉆4-Φ3.5mm的孔
80 鉆 鉆另外一處4-Φ3.5mm的孔
90 鉆 鉆孔攻絲M4螺紋的孔
100 去毛刺 四周輪廓倒角去除毛刺
110 驗(yàn)收 驗(yàn)收
120 入庫(kù) 入庫(kù)
工藝路線二:
10 開料 型材開料
20 去毛刺 去毛刺
30 銑 銑上端面及臺(tái)階面
40 銑 銑下端面
50 銑 銑四周輪廓
60 鉆 鉆4-Φ3.5mm的孔
70 鉆 鉆另外一處4-Φ3.5mm的孔
80 銑 銑4-R3.5槽
90 鉆 鉆孔攻絲M4螺紋的孔
100 去毛刺 四周輪廓倒角去除毛刺
110 驗(yàn)收 驗(yàn)收
120 入庫(kù) 入庫(kù)
以上加工方案大致看來合理,但通過仔細(xì)考慮,零件的技術(shù)要求及可能采取的加工手段之后,就會(huì)發(fā)現(xiàn)仍有問題,
以上工藝過程詳見機(jī)械加工工藝過程綜合卡片。綜合選擇方案一:
工藝路線一:
10 開料 型材開料
20 去毛刺 去毛刺
30 銑 銑上端面及臺(tái)階面
40 銑 銑下端面
50 銑 銑四周輪廓
60 銑 銑4-R3.5槽
70 鉆 鉆4-Φ3.5mm的孔
80 鉆 鉆另外一處4-Φ3.5mm的孔
90 鉆 鉆孔攻絲M4螺紋的孔
100 去毛刺 四周輪廓倒角去除毛刺
110 驗(yàn)收 驗(yàn)收
120 入庫(kù) 入庫(kù)
2.5 機(jī)械加工余量、工序尺寸及毛坯尺寸的確定
“卡板零件”零件材料采用HT200制造。材料為HT200,硬度HB為170—241,生產(chǎn)類型為大批量生產(chǎn),采用鑄造毛坯。
(1)底面的加工余量。
根據(jù)工序要求,頂面加工分粗、精銑加工。各工步余量如下:
粗銑:參照《機(jī)械加工工藝手冊(cè)第1卷》表3.2.23。其余量值規(guī)定為,現(xiàn)取。表3.2.27粗銑平面時(shí)厚度偏差取。
精銑:參照《機(jī)械加工工藝手冊(cè)》表2.3.59,其余量值規(guī)定為。
(3)孔
毛坯為實(shí)心,不沖孔。
(4)端面加工余量。
根據(jù)工藝要求,前后端面分為粗銑、半精銑、半精銑、精銑加工。各工序余量如下:
粗銑:參照《機(jī)械加工工藝手冊(cè)第1卷》表3.2.23,其加工余量規(guī)定為,現(xiàn)取。
半精銑:參照《機(jī)械加工工藝手冊(cè)第1卷》,其加工余量值取為。
精銑:參照《機(jī)械加工工藝手冊(cè)》,其加工余量取為。
2.6確定切削用量及基本工時(shí)(機(jī)動(dòng)時(shí)間)
工序30:銑上端面及臺(tái)階面
機(jī)床:銑床X52K
刀具:硬質(zhì)合金端銑刀(面銑刀) 齒數(shù)[10]
(1)粗銑卡板零件上端面
銑削深度:
每齒進(jìn)給量:根據(jù)《機(jī)械加工工藝手冊(cè)》表2.4.73,取
銑削速度:參照《機(jī)械加工工藝手冊(cè)》表2.4.81,取
機(jī)床主軸轉(zhuǎn)速:,取
實(shí)際銑削速度:
進(jìn)給量:
工作臺(tái)每分進(jìn)給量:
:根據(jù)《機(jī)械加工工藝手冊(cè)》表2.4.81,
被切削層長(zhǎng)度:由毛坯尺寸可知
刀具切入長(zhǎng)度:
刀具切出長(zhǎng)度:取
走刀次數(shù)為1
機(jī)動(dòng)時(shí)間:
(2)精銑卡板銑上端面
銑削深度:
每齒進(jìn)給量:根據(jù)《機(jī)械加工工藝手冊(cè)》表2.4.73,取
銑削速度:參照《機(jī)械加工工藝手冊(cè)》表2.4.81,取
機(jī)床主軸轉(zhuǎn)速:,取
實(shí)際銑削速度:
進(jìn)給量:
工作臺(tái)每分進(jìn)給量:
被切削層長(zhǎng)度:由毛坯尺寸可知
刀具切入長(zhǎng)度:精銑時(shí)
刀具切出長(zhǎng)度:取
走刀次數(shù)為1
機(jī)動(dòng)時(shí)間:
本工序機(jī)動(dòng)時(shí)間
工序40:銑下端面
機(jī)床:銑床X52K
刀具:硬質(zhì)合金可轉(zhuǎn)位端銑刀(面銑刀),材料:, ,齒數(shù),此為粗齒銑刀。
因其單邊余量:Z=3mm
所以銑削深度:=3mm
精銑該平面的單邊余量:Z=1.0mm
銑削深度:
每齒進(jìn)給量:根據(jù)參考文獻(xiàn)[3]表2.4~73,?。焊鶕?jù)參考文獻(xiàn)[3]表2.4~81,取銑削速度
每齒進(jìn)給量:根據(jù)參考文獻(xiàn)[3]表2.4~73,取根據(jù)參考文獻(xiàn)[3]表2.4~81,取銑削速度
機(jī)床主軸轉(zhuǎn)速:
按照參考文獻(xiàn)[3]表3.1~74,取
實(shí)際銑削速度:
進(jìn)給量:
工作臺(tái)每分進(jìn)給量:
:根據(jù)參考文獻(xiàn)[3]表2.4~81,取
切削工時(shí)
被切削層長(zhǎng)度:由毛坯尺寸可知,
刀具切入長(zhǎng)度:
刀具切出長(zhǎng)度:取
走刀次數(shù)為1
機(jī)動(dòng)時(shí)間:
機(jī)動(dòng)時(shí)間:
所以該工序總機(jī)動(dòng)時(shí)間
工序50:銑四周輪廓
機(jī)床:銑床X52K
刀具:硬質(zhì)合金端銑刀(面銑刀) 齒數(shù)[10]
(1)粗銑
銑削深度:
每齒進(jìn)給量:根據(jù)《機(jī)械加工工藝手冊(cè)》表2.4.73,取
銑削速度:參照《機(jī)械加工工藝手冊(cè)》表2.4.81,取
機(jī)床主軸轉(zhuǎn)速:,取
實(shí)際銑削速度:
進(jìn)給量:
工作臺(tái)每分進(jìn)給量:
:根據(jù)《機(jī)械加工工藝手冊(cè)》表2.4.81,
被切削層長(zhǎng)度:由毛坯尺寸可知
刀具切入長(zhǎng)度:
刀具切出長(zhǎng)度:取
走刀次數(shù)為1
機(jī)動(dòng)時(shí)間:
(2)精銑
銑削深度:
每齒進(jìn)給量:根據(jù)《機(jī)械加工工藝手冊(cè)》表2.4.73,取
銑削速度:參照《機(jī)械加工工藝手冊(cè)》表2.4.81,取
機(jī)床主軸轉(zhuǎn)速:,取
實(shí)際銑削速度:
進(jìn)給量:
工作臺(tái)每分進(jìn)給量:
被切削層長(zhǎng)度:由毛坯尺寸可知
刀具切入長(zhǎng)度:精銑時(shí)
刀具切出長(zhǎng)度:取
走刀次數(shù)為1
機(jī)動(dòng)時(shí)間:
本工序機(jī)動(dòng)時(shí)間
工序40:銑4-R3.5槽
機(jī)床:銑床X52K
刀具:硬質(zhì)合金可轉(zhuǎn)位端銑刀(面銑刀),材料:, ,齒數(shù),此為粗齒銑刀。
因其單邊余量:Z=3mm
所以銑削深度:=3mm
精銑該平面的單邊余量:Z=1.0mm
銑削深度:
每齒進(jìn)給量:根據(jù)參考文獻(xiàn)[3]表2.4~73,取:根據(jù)參考文獻(xiàn)[3]表2.4~81,取銑削速度
每齒進(jìn)給量:根據(jù)參考文獻(xiàn)[3]表2.4~73,取根據(jù)參考文獻(xiàn)[3]表2.4~81,取銑削速度
機(jī)床主軸轉(zhuǎn)速:
按照參考文獻(xiàn)[3]表3.1~74,取
實(shí)際銑削速度:
進(jìn)給量:
工作臺(tái)每分進(jìn)給量:
:根據(jù)參考文獻(xiàn)[3]表2.4~81,取
切削工時(shí)
被切削層長(zhǎng)度:由毛坯尺寸可知,
刀具切入長(zhǎng)度:
刀具切出長(zhǎng)度:取
走刀次數(shù)為1
機(jī)動(dòng)時(shí)間:
機(jī)動(dòng)時(shí)間:
所以該工序總機(jī)動(dòng)時(shí)間
工序70:鉆4-Φ3.5mm的孔
鉆孔選用機(jī)床為Z525搖臂機(jī)床,刀具選用GB1436-85直柄短麻花鉆,《機(jī)械加工工藝手冊(cè)》第2卷。
根據(jù)《機(jī)械加工工藝手冊(cè)》第2卷表10.4-2查得鉆孔進(jìn)給量為0.20~0.35。
則取
確定切削速度,根據(jù)《機(jī)械加工工藝手冊(cè)》第2卷表10.4-9
切削速度計(jì)算公式為 (3-20)
查得參數(shù)為,刀具耐用度T=35
則 ==1.6
所以 ==72
選取
所以實(shí)際切削速度為=2.64
確定切削時(shí)間(一個(gè)孔) =
工序80:鉆另外一處4-Φ3.5mm的孔
鉆孔選用機(jī)床為Z525搖臂機(jī)床,刀具選用GB1436-85直柄短麻花鉆,《機(jī)械加工工藝手冊(cè)》第2卷。
根據(jù)《機(jī)械加工工藝手冊(cè)》第2卷表10.4-2查得鉆孔進(jìn)給量為0.20~0.35。
則取
確定切削速度,根據(jù)《機(jī)械加工工藝手冊(cè)》第2卷表10.4-9
切削速度計(jì)算公式為 (3-20)
查得參數(shù)為,刀具耐用度T=35
則 ==1.6
所以 ==72
選取
所以實(shí)際切削速度為=2.64
確定切削時(shí)間(一個(gè)孔) =
工序90:鉆孔攻絲M4螺紋的孔
機(jī)床:立式鉆床Z525
刀具:根據(jù)參照參考文獻(xiàn)[3]表4.3~9選高速鋼錐柄麻花鉆頭。
切削深度:
進(jìn)給量:根據(jù)參考文獻(xiàn)[3]表2.4~38,取。
切削速度:參照參考文獻(xiàn)[3]表2.4~41,取。
機(jī)床主軸轉(zhuǎn)速:
,
按照參考文獻(xiàn)[3]表3.1~31,取
所以實(shí)際切削速度:
切削工時(shí)
被切削層長(zhǎng)度:
刀具切入長(zhǎng)度:
刀具切出長(zhǎng)度: 取
走刀次數(shù)為1
機(jī)動(dòng)時(shí)間:
第3章 鉆孔專用夾具設(shè)計(jì)
3.1問題的指出
由于生產(chǎn)類型為成批,大批生產(chǎn),要考慮生產(chǎn)效率,降低勞動(dòng)強(qiáng)度,保證加工質(zhì)量,故需設(shè)計(jì)專用夾具。
由于對(duì)加工精度要求不是很高,所以在本道工序加工時(shí),主要考慮如何降低降低生產(chǎn)成本和降低勞動(dòng)強(qiáng)度。
本次設(shè)計(jì)選擇設(shè)計(jì)是針對(duì)、鉆孔,它將用于Z525鉆床。
3.2 夾具設(shè)計(jì)
3.2.1概述
在機(jī)床對(duì)零件進(jìn)行機(jī)械加工時(shí),為保證工件加工精度,首先要
保證工件在機(jī)床上占有正確的位置,然后通過夾緊機(jī)構(gòu)使工件
正確位置固定不動(dòng),這一任務(wù)就是由夾具來完成。
對(duì)于單件、小批生產(chǎn),應(yīng)盡量使用通用夾具,這樣可以降低工件
的生產(chǎn)成本。但由于通用夾具適用各種工件的裝夾,所以夾緊時(shí)
往比較費(fèi)時(shí)間,并且操作復(fù)雜,生產(chǎn)效率低。
本零件屬于大量生產(chǎn),零件外形也不適于使用通用夾具,為了保證
工件精度, 提高生產(chǎn)效率,設(shè)計(jì)專用夾具就顯得非常必要。
3.2.2方案設(shè)計(jì)
方案設(shè)計(jì)是夾具設(shè)計(jì)的第一步,也是夾具設(shè)計(jì)關(guān)鍵的一步,方案
設(shè)計(jì)的好、壞將直接影響工件的加工精度、加工效率,稍不注意就
會(huì)造成不能滿足工件加工要求,或加工精度不能達(dá)到設(shè)計(jì)要求,因
此必須慎重考慮。
設(shè)計(jì)方案的擬定必須遵循下列原則:
1、 定位裝置要確保工件定位準(zhǔn)確和可靠,符合六位定位原理。
2、 夾具的定位精度能滿足工件精度的要求。
3、 夾具結(jié)構(gòu)盡量簡(jiǎn)單,操縱力小而夾緊可靠,力爭(zhēng)造價(jià)低
3.2.3定位基準(zhǔn)的選擇
我們采用已經(jīng)加工好的孔及其端面作為定位基準(zhǔn),孔和端面
共限制5個(gè)自由度,這樣還有一個(gè)旋轉(zhuǎn)的自由度沒有限制,為了保證空
間工件定位準(zhǔn)確,我們需要限制6個(gè)自由度,因此我們采用一支撐桿來限
制旋轉(zhuǎn)方向的自由度。這樣空間6個(gè)自由度就限制完了。
3.2.4切削力和夾緊力的計(jì)算
由于本道工序主要完成工藝孔的鉆孔加工,鉆削力。由《切削手冊(cè)》得:
鉆削力 式(5-2)
鉆削力矩 式(5-3)
式中
代入公式(5-2)和(5-3)得
本道工序加工工藝孔時(shí),夾緊力方向與鉆削力方向相同。因此進(jìn)行夾緊力計(jì)算無太大意義。只需定位夾緊部件的銷釘強(qiáng)度、剛度適當(dāng)即能滿足加工要求。
這樣能較容易、較穩(wěn)定地保證加工精度。用夾具裝夾工件時(shí),工件相對(duì)與刀具的位置由夾具保證,基本不受工人技術(shù)水平的影響,因而能較容易、教穩(wěn)定地保證工件的加工精度。能提高勞動(dòng)生產(chǎn)率,減輕工人的勞動(dòng)強(qiáng)度。采用夾具后,工件不需劃線找正,裝夾方便迅速,顯著地減少了輔助時(shí)間,提高了勞動(dòng)生產(chǎn)率。
夾緊力的計(jì)算:因采用的是手動(dòng)夾具故夾緊力無須計(jì)算。
3.3切削力和夾緊力計(jì)算
(1)刀具:刀具用高速鋼刀具鉆頭
機(jī)床: Z525機(jī)床
切削力公式:
式中
查表得:
其中:,
即:
實(shí)際所需夾緊力:由參考文獻(xiàn)[5]表得:
有:
安全系數(shù)K可按下式計(jì)算有:
式中:為各種因素的安全系數(shù),見參考文獻(xiàn)[5]表 可得:
所以
3.4夾緊力的計(jì)算
選用夾緊螺釘夾緊機(jī) 由
其中f為夾緊面上的摩擦系數(shù),取
F=+G G為工件自重
夾緊螺釘: 公稱直徑d=20mm,材料45鋼 性能級(jí)數(shù)為6.8級(jí)
螺釘疲勞極限:
極限應(yīng)力幅:
許用應(yīng)力幅:
螺釘?shù)膹?qiáng)度校核:螺釘?shù)脑S用切應(yīng)力為
[s]=2.5~4 取[s]=4
得
滿足要求
經(jīng)校核: 滿足強(qiáng)度要求,夾具安全可靠,
使用快速螺旋定位機(jī)構(gòu)快速人工夾緊,調(diào)節(jié)夾緊力調(diào)節(jié)裝置,即可指定可靠的夾緊力
3.5定位誤差分析
(1) 定位元件尺寸及公差確定。
由資料[10]《機(jī)床夾具設(shè)計(jì)手冊(cè)》可得:
① 定位誤差:定位尺寸公差,在加工尺寸方向上的投影,這里的方向與加工方向一致。即:故
② 夾緊安裝誤差,對(duì)工序尺寸的影響均小。即:
⑵ 夾緊誤差 :
其中接觸變形位移值:
查[5]表1~2~15有。
⑶ 磨損造成的加工誤差:通常不超過
⑷ 夾具相對(duì)刀具位置誤差:取
誤差總和:
從以上的分析可見,所設(shè)計(jì)的夾具能滿足零件的加工精度要求。
3.6零、部件的設(shè)計(jì)與選用
鉆套、襯套、鉆模板設(shè)計(jì)與選用
工藝孔的加工只需鉆切削就能滿足加工要求。故選用可換鉆套(其結(jié)構(gòu)如下圖所示)以減少更換鉆套的輔助時(shí)間。
.尺寸表
d
D
D1
H
t
基本尺寸
極限偏差F7
基本尺寸
極限偏差D6
>0~1
+0.016
+0.006
3
+0.010
+0.004
6
6
9
--
0.008
>1~1.8
4
+0.016
+0.008
7
>1.8~2.6
5
8
>2.6~3
6
9
8
12
16
>3~3.3
+0.022
+0.010
>3.3~4
7
+0.019
+0.010
10
>4~5
8
11
>5~6
10
13
10
16
20
>6~8
+0.028
+0.013
12
+0.023
+0.012
15
>8~10
15
18
12
20
25
>10~12
+0.034
+0.016
18
22
>12~15
22
+0.028
+0.015
26
16
28
36
>15~18
26
30
0.012
>18~22
+0.041
+0.020
30
34
20
36
45
>22~26
35
+0.033
+0.017
39
>26~30
42
46
25
45
56
>30~35
+0.050
+0.025
48
52
>35~42
55
+0.039
+0.020
59
30
56
67
>42~48
62
66
>48~50
70
74
0.040
鉆模板選用翻轉(zhuǎn)鉆模板,用沉頭螺釘錐銷定位于夾具體上。
3.7確定夾具體結(jié)構(gòu)尺寸和總體結(jié)構(gòu)
夾具體:夾具的定位、引導(dǎo)、夾緊裝置裝在夾具體上,使其成為一體,并能正確的安裝在機(jī)床上。夾具體是將夾具上的各種裝置和元件連接成一個(gè)整體的最大最復(fù)雜的基礎(chǔ)件。夾具體的形狀和尺寸取決于夾具上各種裝置的布置以及夾具與機(jī)床的連接,而且在零件的加工過程中,夾具還要承受夾緊力、切削力以及由此產(chǎn)生的沖擊和振動(dòng),因此夾具體必須具有必要的強(qiáng)度和剛度。切削加工過程中產(chǎn)生的切屑有一部分還會(huì)落在夾具體上,切屑積聚過多將影響工件的可靠的定位和夾緊,因此設(shè)計(jì)夾具體時(shí),必須考慮結(jié)構(gòu)應(yīng)便于排屑。此外,夾具體結(jié)構(gòu)的工藝性、經(jīng)濟(jì)性以及操作和裝拆的便捷性等,在設(shè)計(jì)時(shí)也應(yīng)加以考慮。
夾具體設(shè)計(jì)的基本要求
(1)應(yīng)有適當(dāng)?shù)木群统叽绶€(wěn)定性
夾具體上的重要表面,如安裝定位元件的表面、安裝對(duì)刀塊或?qū)蛟谋砻嬉约皧A具體的安裝基面,應(yīng)有適當(dāng)?shù)某叽缇群托螤罹?,它們之間應(yīng)有適當(dāng)?shù)奈恢镁取?
為使夾具體的尺寸保持穩(wěn)定,鑄造夾具體要進(jìn)行時(shí)效處理,焊接和鍛造夾具體要進(jìn)行退火處理。
(2)應(yīng)有足夠的強(qiáng)度和剛度
為了保證在加工過程中不因夾緊力、切削力等外力的作用而產(chǎn)生不允許的變形和振動(dòng),夾具體應(yīng)有足夠的壁厚,剛性不足處可適當(dāng)增設(shè)加強(qiáng)筋。
(3)應(yīng)有良好的結(jié)構(gòu)工藝性和使用性
夾具體一般外形尺寸較大,結(jié)構(gòu)比較復(fù)雜,而且各表面間的相互位置精度要求高,因此應(yīng)特別注意其結(jié)構(gòu)工藝性,應(yīng)做到裝卸工件方便,夾具維修方便。在滿足剛度和強(qiáng)度的前提下,應(yīng)盡量能減輕重量,縮小體積,力求簡(jiǎn)單。
(4)應(yīng)便于排除切屑
在機(jī)械加工過程中,切屑會(huì)不斷地積聚在夾具體周圍,如不及時(shí)排除,切削熱量的積聚會(huì)破壞夾具的定位精度,切屑的拋甩可能纏繞定位元件,也會(huì)破壞定位精度,甚至發(fā)生安全事故。因此,對(duì)于加工過程中切屑產(chǎn)生不多的情況,可適當(dāng)加大定位元件工作表面與夾具體之間的距離以增大容屑空間:對(duì)于加工過程中切削產(chǎn)生較多的情況,一般應(yīng)在夾具體上設(shè)置排屑槽。
(5)在機(jī)床上的安裝應(yīng)穩(wěn)定可靠
夾具在機(jī)床上的安裝都是通過夾具體上的安裝基面與機(jī)床上的相應(yīng)表面的接觸或配合實(shí)現(xiàn)的。當(dāng)夾具在機(jī)床工作臺(tái)上安裝時(shí),夾具的重心應(yīng)盡量低,支承面積應(yīng)足夠大,安裝基面應(yīng)有較高的配合精度,保證安裝穩(wěn)定可靠。夾具底部一般應(yīng)中空,大型夾具還應(yīng)設(shè)置吊環(huán)或起重孔。
工件裝夾方案確定以后,根據(jù)定位元件及夾緊機(jī)構(gòu)所需要的空間范圍及機(jī)床工作臺(tái)的尺寸,確定夾具體的結(jié)構(gòu)尺寸,然后繪制夾具總圖。詳見繪制的夾具裝配圖。
總 結(jié)
畢業(yè)設(shè)計(jì),是一個(gè)系統(tǒng)性、知識(shí)點(diǎn)廣泛的學(xué)習(xí)過程。通過這樣一個(gè)系統(tǒng)性的學(xué)習(xí)和結(jié)合,使自己把學(xué)過的知識(shí)聯(lián)系起來,運(yùn)用到各個(gè)方面上去。同時(shí),廣泛地運(yùn)用設(shè)計(jì)手冊(cè)及各種參考資料,學(xué)會(huì)了在實(shí)際中運(yùn)用工具書,和獨(dú)立完成每一步查找工作;整個(gè)零件的加工過程是和其他同學(xué)分工完成的,集中體現(xiàn)了團(tuán)隊(duì)精神,合作分工能很好的提高辦事效率!在這次設(shè)計(jì)中培養(yǎng)了我獨(dú)立分工合作的能力!為以后出身社會(huì)的工作打下基礎(chǔ)!
通過不懈努力和指導(dǎo)老師的精心指導(dǎo)下,針對(duì)這些問題查閱了大量的相關(guān)資料。最后,將這些問題一一解決,并夾緊都采用了手動(dòng)夾緊,由于工件的尺寸不大,所需的夾緊力不大。
完成了本次設(shè)計(jì),通過做這次的設(shè)計(jì),使對(duì)專業(yè)知識(shí)和技能有了進(jìn)一步的提高,為以后從事本專業(yè)技術(shù)的工作打下了堅(jiān)實(shí)的基礎(chǔ)。
參考文獻(xiàn)
參 考 文 獻(xiàn)
[1] 東北重型機(jī)械學(xué)院,洛陽農(nóng)業(yè)機(jī)械學(xué)院,長(zhǎng)春汽車廠工人大學(xué),機(jī)床夾具設(shè)計(jì)手冊(cè)[M],上海:上??茖W(xué)技術(shù)出版社,1980。
[2] 張進(jìn)生。機(jī)械制造工藝與夾具設(shè)計(jì)指導(dǎo)[M]。機(jī)械工業(yè)出版社,1995。
[3] 李慶壽。機(jī)床夾具設(shè)計(jì)[M]。機(jī)械工業(yè)出版社,1991。
[4] 李洪。機(jī)械加工工藝手冊(cè)[M]。北京出版社,1996。
[5] 上海市金屬切削技術(shù)協(xié)會(huì)。金屬切削手冊(cè)[M]。上海科學(xué)技術(shù)出版社,2544。
[6] 黃如林,劉新佳,汪群。切削加工簡(jiǎn)明實(shí)用手冊(cè)[M]?;瘜W(xué)工業(yè)出版社,2544。
[7] 余光國(guó),馬俊,張興發(fā),機(jī)床夾具設(shè)計(jì)[M],重慶:重慶大學(xué)出版社,1995。
[8] [周永強(qiáng),高等學(xué)校畢業(yè)設(shè)計(jì)指導(dǎo)[M],北京:中國(guó)建材工業(yè)出版社,2542。
[9]?劉文劍,曹天河,趙維,夾具工程師手冊(cè)[M],哈爾濱:黑龍江科學(xué)技術(shù)出版社,1987。
[10] 王光斗,王春福。機(jī)床夾具設(shè)計(jì)手冊(cè)[M]。上海科學(xué)技術(shù)出版社,2542。
[11] 東北重型機(jī)械學(xué)院,洛陽農(nóng)業(yè)機(jī)械學(xué)院,長(zhǎng)春汽車廠工人大學(xué)。機(jī)床夾具設(shè)計(jì)手冊(cè)[M].上??茖W(xué)技術(shù)出版社,1984。
[12] 李慶壽,機(jī)械制造工藝裝備設(shè)計(jì)適用手冊(cè)[M],銀州:寧夏人民出版社,1991。
[13] 廖念釗,莫雨松,李碩根,互換性與技術(shù)測(cè)量[M],中國(guó)計(jì)量出版社,2540:9-19。
[14] [王光斗,王春福,機(jī)床夾具設(shè)計(jì)手冊(cè)[M],上??茖W(xué)技術(shù)出版社,2540。
[15] 樂兌謙,金屬切削刀具,機(jī)械工業(yè)出版社,25Q235:4-17。
[16] Machine Tools N.chernor 1984.
[17] Machine Tool Metalworking John L.Feirer 1973.
致 謝
經(jīng)過了的很長(zhǎng)時(shí)間,終于比較圓滿完成了設(shè)計(jì)任務(wù)?;仡欉@日日夜夜,感覺經(jīng)過了一場(chǎng)磨練,通過圖書、網(wǎng)絡(luò)、老師、同學(xué)等各種可以利用的方法,鞏固了自己的專業(yè)知識(shí)。對(duì)所學(xué)知識(shí)的了解和使用都有了更加深刻的理解。
此時(shí)此刻,我要特別感謝我的導(dǎo)師的精心指導(dǎo),不僅指導(dǎo)我們解決了關(guān)鍵性技術(shù)難題,更重要的是為我們指引了設(shè)計(jì)的思路并給我們講解了設(shè)計(jì)中用到的實(shí)際工程設(shè)計(jì)經(jīng)驗(yàn),從而使我們?cè)O(shè)計(jì)中始終保持著清晰的思維也少走了很多彎路,也使我學(xué)會(huì)綜合應(yīng)用所學(xué)知識(shí),提高分析和解決實(shí)際問題的能力。不僅如此,老師的敬業(yè)精神更是深深的感染了我,鞭策著我在以后的工作中愛崗敬業(yè),導(dǎo)師是真真正正作到了傳道、授業(yè)、解惑。
同時(shí)也要感謝其他同學(xué)、老師和同事的熱心幫助,感謝院系領(lǐng)導(dǎo)對(duì)我們畢業(yè)設(shè)計(jì)的重視和關(guān)心,為我們提供了作圖工具和場(chǎng)所,使我們能夠全身心的投入到設(shè)計(jì)中去,為更好、更快的完成畢業(yè)設(shè)計(jì)提供了重要保障。
43
工 藝 過 程 卡
產(chǎn)品型號(hào)
零(部)件圖號(hào)
共1 頁
產(chǎn)品名稱
卡板
零(部)件名稱
卡板
第1 頁
材料牌號(hào)
6061
毛坯種類
型材
毛坯外形尺寸
每毛坯件數(shù)
1
每臺(tái)件數(shù)
1
備注
工序號(hào)
工序名稱
工 序 內(nèi) 容
車間
設(shè) 備
工 藝 裝 備
工 時(shí)
名稱、型號(hào)
編號(hào)
夾 具
輔具
刀、量具
準(zhǔn)終
單件
10
開料
型材開料
鑄
20
去毛刺
去毛刺
30
銑
銑上端面及臺(tái)階面
金
立式銑床
X52K
專用夾具
游標(biāo)卡尺
面銑刀
5min
5min
40
銑
銑下端面
金
立式銑床
X52K
專用夾具
游標(biāo)卡尺
面銑刀
3min
3min
50
銑
銑四周輪廓
金
立式銑床
X52K
專用夾具
游標(biāo)卡尺
面銑刀
5min
5min
60
銑
銑4-R3.5槽
金
立式銑床
X52K
專用夾具
游標(biāo)卡尺
面銑刀
5min
5min
70
鉆
鉆4-Φ3.5mm的孔
金
搖臂鉆床
Z525
專用夾具
游標(biāo)卡尺
鉆頭,鉸刀
14min
14min
80
鉆
鉆另外一處4-Φ3.5mm的孔
金
搖臂鉆床
Z525
專用夾具
游標(biāo)卡尺
鉆頭
14min
14min
90
鉆
鉆孔攻絲M4螺紋的孔
金
搖臂鉆床
Z525
專用夾具
游標(biāo)卡尺
鉆頭
14min
14min
100
去毛刺
四周輪廓倒角去除毛刺
110
驗(yàn)收
驗(yàn)收
120
入庫(kù)
入庫(kù)
編 制
審 核
會(huì) 簽
標(biāo)記
處數(shù)
更改文件號(hào)
簽 字
日 期
標(biāo) 記
處數(shù)
更改文件號(hào)
簽 字
日 期
高卉林
機(jī)械原理
基于局部平均分解的階次跟蹤分析及其在齒輪故障診斷中的應(yīng)用
Junsheng Cheng, Kang Zhang, Yu Yang
關(guān)鍵詞:
階次跟蹤分析 局部平均分解 解調(diào) 齒輪 故障診斷
摘要:
局部平均分解(LMD)是一種新的自適應(yīng)時(shí)頻分析方法,這種方法特別適合處理多分量的調(diào)幅信號(hào)和調(diào)頻(AM-FM)信號(hào)。通過使用LMD方法,可以將任何復(fù)雜的信號(hào)分解為一系列的產(chǎn)品功能PF分量(PFs),每個(gè)PF分量都是純調(diào)頻信號(hào)和包絡(luò)信號(hào)的乘積,且通過純調(diào)頻信號(hào)可以獲得具有物理意義的瞬時(shí)頻率。從理論上講,每個(gè)PF分量都是一個(gè)單分量的AM-FM信號(hào)。 因此,可以將LMD的過程看作是信號(hào)解調(diào)的過程。齒輪發(fā)生故障時(shí),振動(dòng)信號(hào)呈現(xiàn)明顯的AM-FM特征。因此,針對(duì)齒輪升降速過程中故障振動(dòng)信號(hào)為多分量的調(diào)制信號(hào),以及故障特征頻率隨轉(zhuǎn)速變化的特點(diǎn),提出了一種基于LMD和階次跟蹤分析的齒輪故障診斷方法。齒輪箱的故障診斷實(shí)驗(yàn)表明本文提出的方法能有效地提出齒輪故障診斷特征。
1 引言
齒輪傳動(dòng)是機(jī)械設(shè)備中常見的傳動(dòng)方式, 故對(duì)齒輪進(jìn)行故障診斷具有重要意義。
齒輪故障診斷的關(guān)鍵一步是故障特征的提取。一方面,傳統(tǒng)的齒輪故障診斷方法的重點(diǎn)在一個(gè)固定的旋轉(zhuǎn)速度檢測(cè)振動(dòng)信號(hào)的頻譜分析。 而齒輪作為一種旋轉(zhuǎn)部件, 其升降速過程的振動(dòng)信號(hào)往往包含了豐富的狀態(tài)信息, 一些在平穩(wěn)運(yùn)行時(shí)不易反映的故障特征在升降速過程中可能會(huì)充分地表現(xiàn)出來[1],此外,來自齒輪振動(dòng)信號(hào)的暫態(tài)過程中,速度依賴性總是顯示非平穩(wěn)特征。如果頻譜分析直接應(yīng)用于非平穩(wěn)振動(dòng)信號(hào),混頻將不可避免的發(fā)生,這將對(duì)故障特征提取帶來不良影響。在以往的研究中,為了跟蹤技術(shù),通常利用振動(dòng)信號(hào)中添加旋轉(zhuǎn)機(jī)械軸轉(zhuǎn)速信息,已經(jīng)成為一個(gè)在旋轉(zhuǎn)機(jī)械故障診斷[2,3]的重要途徑。從本質(zhì)上講,階次跟蹤分析技術(shù)可以在時(shí)域非平穩(wěn)信號(hào)轉(zhuǎn)換成角域靜止,可以突出的旋轉(zhuǎn)速度相關(guān)的振動(dòng)信息和抑制無關(guān)的信息。因此,階次跟蹤分析是在助跑過程中齒輪的故障特征提取和運(yùn)行了一個(gè)可取的方法
另一方面,當(dāng)發(fā)生故障的齒輪振動(dòng)信號(hào),拿起在運(yùn)行和運(yùn)行過程中始終存在的振幅特性調(diào)制和頻率調(diào)制(AM–FM)。為了提取齒輪故障振動(dòng)信號(hào)的調(diào)制特征,解調(diào)分析是最流行的方法之一[ 4,5 ]。然而,傳統(tǒng)的解調(diào)方法,如希爾伯特變換解調(diào)和傳統(tǒng)包絡(luò)分析有其自身的局限性[ 6 ]。這些缺點(diǎn)包括兩個(gè)方面:(1)在實(shí)踐中大多數(shù)的齒輪故障振動(dòng)信號(hào)都是多組分是–調(diào)頻信號(hào)。這些信號(hào),在傳統(tǒng)的解調(diào)方法,他們通常是通過帶通濾波器分解成單組分是–調(diào)頻信號(hào)的解調(diào),然后提取的頻率和振幅信息。然而,這兩個(gè)數(shù)載波頻率的載波頻率成分和幅值都難以在實(shí)踐中被確定,所以帶通濾波器的中心頻率的選擇具有主體性,將解調(diào)誤差和使它提取機(jī)械故障振動(dòng)信號(hào)的特征是無效的;(2)由于希爾伯特不可避免的窗口效應(yīng)變換,當(dāng)使用希爾伯特變換提取調(diào)制信息,目前的非瞬時(shí)響應(yīng)特性,即,在調(diào)制信號(hào)被解調(diào)以及打破中間部分的兩端會(huì)再次產(chǎn)生調(diào)制,使振幅指數(shù)衰減的方式得到的波動(dòng),然后解調(diào)誤差將增加[ 7 ]。為了克服第一個(gè)缺點(diǎn),一個(gè)合適的分解方法應(yīng)尋找獨(dú)立的多分量信號(hào)為多個(gè)單組分是–調(diào)頻信號(hào)的包絡(luò)分析之前。由于EMD(經(jīng)驗(yàn)?zāi)B(tài)分解)自適應(yīng)復(fù)雜多分量信號(hào)分解為一系列固有模態(tài)函數(shù)(IMF)的瞬時(shí)頻率的物理意義[ 8,9 ],基于EMD的階比跟蹤方法已廣泛應(yīng)用于齒輪故障診斷[ 13 ]。然而,仍然存在許多不足之處[ 14 ],如在EMD的端點(diǎn)效應(yīng)和模態(tài)混 [ 15 ],仍在進(jìn)行。此外,對(duì)原信號(hào)通過EMD分解,產(chǎn)生了由希爾伯特變換(上面提到的)缺點(diǎn)是不可避免的在IMF進(jìn)行希爾伯特變換的包絡(luò)分析。此外,有時(shí)無法解釋的負(fù)瞬態(tài)頻率時(shí)會(huì)出現(xiàn)瞬時(shí)頻率計(jì)算每個(gè)IMF進(jìn)行希爾伯特變換[ 16 ]
局部均值分解(LMD)是一種新型的解調(diào)分析方法,特別適合于處理多組分的幅度調(diào)制和頻率調(diào)制(AM–調(diào)頻)信號(hào)[ 16 ]。用LMD,任何復(fù)雜的信號(hào)可以分解成許多產(chǎn)品功能(PFS),每一種產(chǎn)品的包絡(luò)線信號(hào)(獲得直接由分解)的PF瞬時(shí)振幅可以得到一個(gè)純粹的頻率調(diào)制信號(hào)從一個(gè)良好定義的瞬時(shí)頻率可以計(jì)算。在本質(zhì)上,每個(gè)PF正是一種單組分我–調(diào)頻信號(hào)。因此,LMD的程序可以,事實(shí)上,作為解調(diào)過程。調(diào)制信息可以通過頻譜分析的瞬時(shí)振幅(包絡(luò)信號(hào),直接獲得通過分解)每個(gè)PF分量進(jìn)行希爾伯特變換,而不是由PF分量。因此,當(dāng)LMD和EMD方法分別應(yīng)用到解調(diào)分析,與EMD,LMD的突出優(yōu)點(diǎn)是避免希爾伯特變換。此外,LMD迭代過程中所采用的手段和當(dāng)?shù)氐姆炔黄交牡胤接肊MD的三次樣條的方法,這可能帶來的包絡(luò)的誤差和影響的精度瞬時(shí)頻率和振幅。此外,與EMD端點(diǎn)效應(yīng)相比并不明顯,因?yàn)樵贚MD方法更快的速度和算法的迭代次數(shù)更少[ 17 ]。
基于以上分析,階次跟蹤和解調(diào)技術(shù),LMD最近的發(fā)展,科學(xué)相結(jié)合,并應(yīng)用于齒輪故障診斷過程中各軸速度。首先,訂單跟蹤技術(shù)被用于將從時(shí)間域的齒輪振動(dòng)信號(hào)角域。其次,分解角域重采樣信號(hào)的PF系列LMD,因此組件和相應(yīng)的瞬時(shí)振幅和瞬時(shí)頻率可以得到的。最后,進(jìn)行頻譜分析的故障信息含有顯性PF分量的瞬時(shí)幅值。從實(shí)驗(yàn)的振動(dòng)信號(hào),表明該方法能有效地提取故障特征和分類準(zhǔn)確齒輪工作狀態(tài)的分析結(jié)果。
本文的組織如下。第2節(jié)是一個(gè)給定的LMD方法理論。在第3節(jié)中的齒輪故障診斷方法中,以技術(shù)和LMD跟蹤相結(jié)合的提出和實(shí)踐應(yīng)用表明,提出的方法。此外,LMD和基于EMD的比較也在第3節(jié)提到了基礎(chǔ)的方法。最后,我們得出了第4部分的結(jié)論。
2 LMD 方法
LMD方法的本質(zhì)是通過迭代從原始信號(hào)中分離出純調(diào)頻信號(hào)和包絡(luò)信號(hào),然后將純調(diào)頻信號(hào)和包絡(luò)信號(hào)相乘便可以得到一個(gè)瞬時(shí)頻率具有物理意義的PF分量,循環(huán)處理直至所有的PF分量分離出來對(duì)任意信號(hào)x(t),其分解過程如[16]:
( 1) 確定原始信號(hào)第i個(gè)局部極值及其對(duì)應(yīng)的時(shí)刻,計(jì)算相鄰兩個(gè)局部極值和的平均值
(1)
將所有平均值點(diǎn)mi在其對(duì)應(yīng)的時(shí)間段[,]內(nèi)伸一線段,然后用滑動(dòng)平均法進(jìn)行0平滑處理,得到局均值m11(t) 。
( 2) 采用局部極值點(diǎn)計(jì)算局部幅值 :
=| -|/2 (2)
將所有局部幅值點(diǎn)ai在其對(duì)應(yīng)的時(shí)間段[,]內(nèi)伸成一條線段,然后采用滑動(dòng)平均法進(jìn)行平滑處理,得到包估計(jì)函數(shù)a11(t) 。
( 3) 將局部均值函數(shù)m11(t)從原始信號(hào)x(t)中分離來, 即去掉一個(gè)低頻成分,得到
h11(t)=x(t)-m11(t) (3)
( 4)用h11(t)除以包絡(luò)估計(jì)函數(shù)A11( t)以對(duì)h11(t)進(jìn)行解調(diào),得到
s11(t)=h11(t)/A11(t) (4)
對(duì)s11( t)重復(fù)上述步驟便能得到s11(t)的包絡(luò)估計(jì)函數(shù)A12(t),若A12(t)不等于1,則s11( t)不是一個(gè)純調(diào)頻信號(hào)需要重復(fù)上述迭代過程n次,直至s1n(t)為一個(gè)純調(diào)頻信號(hào),即 s1n(t)的包絡(luò)估計(jì)函數(shù) A1(n+1)(t)=1,所以,有
(5)
(6)
為理論上, 迭代終止的條件
(7)
在實(shí)踐中,一種變體δ會(huì)提前確定。如果1?δ≤a1(n + 1)(t)≤1 +δand?1≤s1n(t)≤1,然后迭代過程將停止
( 5) 把迭代過程中產(chǎn)生的所有包絡(luò)估計(jì)函數(shù)相乘便可以得到包絡(luò)信號(hào)( 瞬時(shí)幅值函數(shù)) :
(8)
( 6) 將包絡(luò)信號(hào)A1(t)和純調(diào)頻信號(hào)s1n(t)相乘便可以得到原始信號(hào)的第一個(gè)PF分量:
PF1(t)=a1(t)s1n(t) ( 9)
PF1(t)包含了原始信號(hào)中頻率值最高的成分,是一個(gè)單分量的調(diào)幅-調(diào)頻信號(hào),PF1(t)的瞬時(shí)幅值就是包絡(luò)信號(hào)A1(t),PF1(t)的瞬時(shí)頻率f1(t)則可由純調(diào)頻信號(hào)s1n(t)求出,即:
(10)
( 7)將第一個(gè)PF分量PF1(t)從原始信號(hào)x(t)中分離出來, 得到一個(gè)新的信號(hào)u1(t),將u1( t)作為原始數(shù)據(jù)重復(fù)以上步驟,循環(huán)k次,直到 uk為一個(gè)單調(diào)函數(shù)為止,即:
(11)
原始信號(hào)x(t)能夠被所有的PF分量和uk重構(gòu),即:
(12)
產(chǎn)品功能p的數(shù)量在哪里.此外,相應(yīng)的完整的時(shí)頻分布可以通過組裝瞬時(shí)幅度和瞬時(shí)頻率的PF組件。
3 基于階次跟蹤分析與 L M D 的齒輪故障診斷
3.1 階次跟蹤分析
階次跟蹤分析首先根據(jù)參考軸的轉(zhuǎn)速信息對(duì)時(shí)域信號(hào)進(jìn)行等角度重采樣, 將時(shí)域非平穩(wěn)信號(hào)轉(zhuǎn)換為角域平穩(wěn)信號(hào), 再對(duì)角域平穩(wěn)信號(hào)進(jìn)行譜分析得到階次譜。階次跟蹤分析能夠提取信號(hào)中與參考軸轉(zhuǎn)速有關(guān)的信息, 同時(shí)抑制與轉(zhuǎn)速無關(guān)的信號(hào), 因此非常適合分析旋轉(zhuǎn)機(jī)械在變轉(zhuǎn)速過程下的振動(dòng)信號(hào)。實(shí)現(xiàn)階次跟蹤分析技術(shù)的關(guān)鍵在于, 如何實(shí)現(xiàn)被分析信號(hào)相對(duì)于參考軸的等角度重采樣, 即階次重采樣。常用的階次重采樣方法有硬件階次跟蹤法[ 6]、計(jì)算階次跟蹤法[ 7]和基于瞬時(shí)頻率估計(jì)的階次跟蹤法[ 8]等。硬件階次跟蹤法直接通過專用的模擬設(shè)備實(shí)現(xiàn)信號(hào)的等角度重采樣,實(shí)時(shí)性好,但只適用于軸轉(zhuǎn)速較穩(wěn)定的情況,且成本很高;基于瞬時(shí)頻率估計(jì)的階次跟蹤法不需要專門的硬件設(shè)備,無需考慮硬件安裝問題,且成本較低, 但是不適用于分析多分量信號(hào),而實(shí)際工程信號(hào)大多為多分量信號(hào), 因此其實(shí)際應(yīng)用意義不大;COT法通過軟件的形式實(shí)現(xiàn)等角度重采樣,分析精度高, 對(duì)被分析的信號(hào)沒有特別的要求,并且無需特定的硬件, 因此是一種應(yīng)用廣泛的階次跟蹤分析方法。
根據(jù)試驗(yàn)條件采用COT法實(shí)現(xiàn)信號(hào)的階次重采樣,其具體步驟如下:
1. 對(duì)振動(dòng)信號(hào)和轉(zhuǎn)速信號(hào)分兩路同時(shí)進(jìn)行等時(shí)間間隔(間隔為$t)采樣,得到異步采樣信號(hào);
2. 通過轉(zhuǎn)速信號(hào)計(jì)算等角度增量 $H 所對(duì)應(yīng)的時(shí)間序列ti ;
3. 根據(jù)時(shí)間序列ti的值,對(duì)振動(dòng)信號(hào)進(jìn)行插值,求出其對(duì)應(yīng)的幅值,得到振動(dòng)信號(hào)的同步采樣信號(hào),即角域平穩(wěn)信號(hào);
4.使用LMD分解平衡角重采樣信號(hào),因此sPF系列組件和相應(yīng)的瞬間振幅和瞬時(shí)頻率可以獲得
5.光譜分析應(yīng)用于每個(gè)PF的瞬時(shí)振幅組件,然后我們有訂單譜
3.2 齒輪故障診斷實(shí)例
升降速過程中的齒輪故障振動(dòng)信號(hào)通常是多分量的調(diào)幅-調(diào)頻信號(hào),并且故障特征頻率會(huì)隨著轉(zhuǎn)速的變化而改變。針對(duì)升降速過程齒輪故障振動(dòng)信號(hào)的這些特點(diǎn), 提出了基于階次跟蹤分析和 LM D 的齒輪故障診斷方法。首先采用階次跟蹤分析將齒輪升降速過程的時(shí)域振動(dòng)信號(hào)轉(zhuǎn)換成角域平穩(wěn)信號(hào);然后對(duì)角域信號(hào)進(jìn)行LMD分解,得到一系列PF分量,以及各個(gè)PF分量的瞬時(shí)幅值和瞬時(shí)頻率; 最后對(duì)各個(gè)PF分量的瞬時(shí)幅值進(jìn)行頻譜分析,便可以有效地提取出齒輪故障特征。為了驗(yàn)證方法的正確性,在旋轉(zhuǎn)機(jī)械試驗(yàn)臺(tái)上進(jìn)行了齒輪正常和齒根裂紋兩種工況的試驗(yàn)。該系統(tǒng)中, 電機(jī)輸入軸齒輪齒數(shù)z1=55, 輸出軸齒輪齒數(shù)z2 = 75。在輸入軸齒輪齒根上加工出小槽,以模擬齒根紋故 障, 因此齒輪嚙合階次xm=55,故障特征階次xc=1。圖1和圖2所示分別為由轉(zhuǎn)速傳感器測(cè)得的輸入軸瞬時(shí)轉(zhuǎn)速n(t),以及由振動(dòng)傳感器測(cè)得的齒輪故障 振動(dòng)加速度a(t),其中采樣頻率為8192H z,采樣時(shí)間為20s從圖1可以看出,輸入軸轉(zhuǎn)速首先從150r/min逐漸加速至1410r/min, 然后再減速到820r/min,而加速度信號(hào)的幅值也隨著作出了相應(yīng)的變化。不失一般性,截取圖2中5~ 7s升速過程的信號(hào) a1(t)進(jìn)行分析。
圖 1 輸 入軸的瞬時(shí)轉(zhuǎn)速 n ( t )
圖 2 齒輪故障振動(dòng)加速度信號(hào) a( t )
值在秩序O=55和O=110相應(yīng)的齒輪嚙合秩序和雙。因此這意味著頻率混淆現(xiàn)象已經(jīng)在很大程度上消除。然而,為j1(θ)仍然是一個(gè)多個(gè)組件MA-MF信號(hào)。因此,一邊頻帶反映故障特征頻率模糊。有效地提取故障特征,應(yīng)用LMD j - 1(θ),因此七PF組件和殘?jiān)梢缘玫綀D6所示,這意味著LMD解調(diào)的進(jìn)展。因此,它是可以提取齒輪故障特性,利用頻譜分析的瞬時(shí)振幅PF組件包含主要故障信息。通過分析,我們知道失敗的主要信息包括在第一個(gè)PF組件。因此,無花果。7和8給瞬時(shí)振幅a1(θ)的第一個(gè)PF組件PF 1(θ)和相應(yīng)的秩序光譜的a1(θ),很明顯,有不同的光譜峰值在第一順序(O = 1)對(duì)應(yīng)齒輪階次跟蹤功能,符合齒輪的實(shí)際工況。
圖9和圖10顯示轉(zhuǎn)速信號(hào)的n(t)和振動(dòng)加速度信號(hào)的時(shí)域波形s(t)齒輪分別與破碎的牙齒,采樣率為8192 Hz和總樣品時(shí)間是20年代。斷齒故障引入輸入軸上的齒輪與激光切割槽的牙根。首先,一段信號(hào)s1(t)5 s-7年代為進(jìn)一步分析的進(jìn)步是攔截;其次,假設(shè)樣本點(diǎn)每旋轉(zhuǎn)400;第三,角域信號(hào)為j1(θ)圖11所示可以通過執(zhí)行命令重采樣s1(t);第四,LMD適用于j-1(θ);最后,相應(yīng)的秩序頻譜圖12所示的瞬時(shí)振幅首先PF組件PF 1(θ)可以了,很明顯,有不同的光譜峰值(比在圖8)在第一順序(O = 1)階次跟蹤分析對(duì)應(yīng)于齒輪故障功能,符合齒輪的實(shí)際工況。
同樣的,我們同樣可以做正常的齒輪。轉(zhuǎn)速信號(hào)n(t)和振動(dòng)的時(shí)域波形加速度信號(hào)s(t)的正常齒輪分別列在無花果。13和14,采樣率為8192 Hz和總樣品時(shí)間是20多歲。在上述相同的方法應(yīng)用于原始信號(hào)圖14所示,結(jié)果無花果所示。15和16。圖15顯示了角域j - 1(θ)執(zhí)行順序重采樣后的信號(hào)部分(5s-7年代在籌備進(jìn)展)的原始信號(hào)。圖16顯示了相應(yīng)的瞬時(shí)振幅譜第一個(gè)PF組件,很難找到齒輪故障特征,也符合實(shí)際的工作狀態(tài)的裝備。
目前,多組分的另一個(gè)競(jìng)爭(zhēng)解調(diào)方法AM-FM信號(hào),即經(jīng)驗(yàn)?zāi)J椒纸?EMD)存在,已經(jīng)被廣泛應(yīng)用于信號(hào)解調(diào)分析(7、22)。為了比較兩個(gè)EMD方法,取代LMD,我們能做的同樣使用EMD進(jìn)行重采樣信號(hào)無花果所示。圖4、11和15
圖 3 齒輪故障振動(dòng)加速度信號(hào)的頻譜
圖 4 階次重采樣后的齒輪故障振動(dòng) 加速度信號(hào)
圖5 j1(θ)的階次譜
分別,因此可以獲得一系列國(guó)際貨幣基金組織(IMF)組件。此外,相應(yīng)的瞬時(shí)振幅和國(guó)際貨幣基金組織每個(gè)組件的瞬時(shí)頻率可以通過希爾伯特變換計(jì)算。通過分析,我們知道,IMF主要特征信息包含在第一個(gè)組件。因此,只有應(yīng)用于瞬時(shí)頻譜分析第一個(gè)國(guó)際貨幣基金組織(IMF)組件的振幅。無花果。17日至19日給訂單頻譜對(duì)應(yīng)三種振動(dòng)信號(hào)的破解斷層、斷齒故障和正常的齒輪,分別,很明顯,訂單跟蹤分析基于EMD也可以提取齒輪故障特性,確定齒輪的工作狀態(tài)。盡管EMD和LMD都可以分解原始信號(hào)實(shí)際上,兩種方法之間的差異仍然存在。EMD方法比較,如第一節(jié)中所述,LMD有更多迭代次數(shù)少等優(yōu)點(diǎn),不明顯的效果和更少的瞬時(shí)頻率的虛假成分,可以使用更多的應(yīng)用在實(shí)踐中。
圖 6 角域信號(hào)j1( θ )的LMD分解結(jié)果
圖 7 PF1(θ)的瞬時(shí)幅值A(chǔ)1(θ)
圖 8 第1個(gè)PF分量的幅值譜
圖 9 輸入軸的瞬時(shí)轉(zhuǎn)速 n(t)
圖 1 0 正常齒輪的振動(dòng)加速度信號(hào) a(t)
圖11 階次重采樣后的正常齒輪振動(dòng)加速度信號(hào)j1(θ)
圖 12 第一個(gè)PF分量的幅值譜
圖13 輸入軸轉(zhuǎn)速r(t)正常齒輪前和過程中
圖圖14 齒輪的振動(dòng)加速度信號(hào)(t)在正常狀態(tài)
圖15 相應(yīng)的振動(dòng)加速度信號(hào)為j1(θ)角域通過應(yīng)用順序重采樣tos(t)圖14所示。
圖17 第一個(gè)IMF分量的幅值譜
圖 18 第一個(gè)IMF分量的幅值譜
3 結(jié)論
在齒輪故障診斷技術(shù)、階次跟蹤是一個(gè)著名的技術(shù),可用于故障檢測(cè)的旋轉(zhuǎn)機(jī)器采用振動(dòng)信號(hào)。針對(duì)齒輪故障振動(dòng)信號(hào)的調(diào)制特點(diǎn)在助跑和破敗的和缺點(diǎn)在齒輪經(jīng)??梢园l(fā)相關(guān)軸轉(zhuǎn)速在瞬態(tài)過程中,階次跟蹤和技術(shù)LMD相結(jié)合用于齒輪故障診斷。從理論分析和實(shí)驗(yàn)結(jié)果以下幾點(diǎn)得出結(jié)論:
( 1) 在分析齒輪變轉(zhuǎn)速狀態(tài)下的振動(dòng)信號(hào)時(shí),轉(zhuǎn)速波動(dòng)會(huì)引起頻譜圖出現(xiàn)頻率混疊, 而階次跟蹤分析通過對(duì)信號(hào)進(jìn)行階次重采樣能夠在很大程度上消除頻率混疊, 使頻譜圖的譜線清晰可讀。
( 2) 齒輪故障時(shí)的振動(dòng)信號(hào)為一多分量的調(diào)幅- 調(diào)頻信號(hào), 采用LMD方法能將其分解為若干個(gè)PF分量之和,同得到各個(gè)PF分量的瞬時(shí)幅值和瞬時(shí)頻率, 實(shí)現(xiàn)了原信號(hào)的解調(diào)。對(duì)含有齒輪故障特征的PF分量的瞬時(shí)幅值進(jìn)行頻譜分析, 能夠準(zhǔn)確地提取出齒輪故障特征信息。
圖19 階次的第一個(gè)國(guó)際貨幣基金組織(IMF)組件的正常使用EMD齒輪
( 3) 對(duì)齒輪正常和齒根裂紋兩種工況的振動(dòng)信號(hào)進(jìn)行了分析,分析結(jié)果表明, 本文方法能夠準(zhǔn)確地反映出齒輪的實(shí)際工況。
References
[1] S.K. Lee, P.R. White, Higher-order time–frequency analysis and its application to fault detection in rotating machinery, Mechanical Systems and Signal Processing 11 (1997) 637–650.
[2] Mingsian Bai, Jiamin Huang, Minghong Hong, Fucheng Su, Fault diagnosis of rotating machinery using an intelligent order tracking system, Journal of Sound and Vibration 280 (2005) 699–718.
[3] JianDa Wu, YuHsuan Wang, PengHsin Chiang, Mingsian R. Bai, A study of fault diagnosis in a scooter using adaptive order tracking technique and neural network, Expert Systems with Applications 36 (1) (2009) 49–56.
[4] J. Ma, C.J. Li, Gear defect detection through model-based wideband demodulation of vibrations, Mechanical System and Signal Process 10 (5) (1996) 653–665.
[5] R.B. Randall, J. Antoni, S. chobsaard, The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals, Mechanical Systems and Signal Processing 15 (5) (2001) 945–962.
[6] He Lingsong, Li Weihua, Morlet wavelet and its application in enveloping, Journal of Vibration Engineering. 15 (1) (2002) 119–122.
[7] Cheng Junsheng, Yu Dejie, Yang Yu, The application of energy operator demodulation approach based on EMD in machinery fault diagnosis, Mechanical Systems and Signal Processing 21 (2) (2007) 668–677.
[8] N.E. Huang, Z. Shen, S.R. Long, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London Series 454 (1998) 903–995.
[9] N.E. Huang, Z. Shen, S.R. Long, A new view of nonlinear water waves: the Hilbert spectrum, Annual Review of Fluid Mechanics 31 (1999) 417–457.
[10] B.L. Eggers, P.S. Heyns, C.J. Stander, Using computed order tracking to detect gear condition aboard a dragline, Journal of the Southern AfricanInstitute of Mining and Metallurgy 107 (2007) 1–8.
[11] Q. Gao, C. Duan, H. Fan, Q. Meng, Rotating machine fault diagnosis using empirical mode decomposition, Mechanical Systems and Signal Processing 22 (2008) 1072–1081.
[12] F.J. Wu, L.S. Qu, Diagnosis of subharmonic faults of large rotating machinery based on EMD, Mechanical Systems and Signal Processing 23 (2009) 467–475.
[13] K.S. Wang, P.S. Heyns, Application of computed order tracking, Vold–Kalman filtering and EMD in rotating machine vibration, Mechanical Systems and Signal Processing 25 (2011) 416–430.
[14] Junsheng Cheng, Dejie Yu, Yu Yang, Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform, Mechanical Systems and Signal Processing 21 (3) (2007) 1197–1211.
[15] Marcus Datig, Torsten Schlurmann, Performance and limitations of the Hilbert–Huang transformation (HHT) with an application to irregular water waves, Ocean Engineering 31 (14) (2004) 1783–1834.
[16] Jonathan S. Smith, The local mean decomposition and its application to EEG perception data, Journal of the Royal Society, Interface 2 (5) (2005) 443–454.
[17] Junsheng Cheng, Yi Yang, Yu Yang A rotating machinery fault diagnosis method based on local mean decomposition, Digital Signal Processin 22 (2) (2012) 356–366.
[18] K.M. Bossley, R.J. Mckendrick, Hybrid computed order tracking, Mechanical Systems and Signal Processing 13 (4) (1999) 627–641.
[19] JianDa Wu, Mingsian R. Bai, Fu Cheng Su, Chin Wei Huang, An expert system for the diagnosis of faults in rotating machinery using adaptive order tracking algorithm, Expert Systems with Applications 36 (3) (2009) 5424–5431.
[20] Guo Yu, Qin Shuren, Tang Baoping, Ji Yuebo, Order tracking of rotating machinery based on instantaneous frequencies estimation, Chinese Journalof Mechanical Engineering. 39 (3) (2003) 32–36.
[21] Yu Dejie, Yang Yu, Cheng Junsheng, Application of time–frequency entropy method based on Hilbert–Huang transform to gear fault diagnosis, Measurement 40 (2007) 823–830.
[22] R.T. Rato, M.D. Ortigueira, A.G. Batista, On the HHT, its problems, and some solutions, Mechanical Systems and Signal Processing 22 (6) (2008) 1374–1394.
收藏