撥叉七的加工工藝及其夾具設(shè)計(jì)【含10張cad圖紙+文檔全套資料】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問(wèn)咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問(wèn)咨詢QQ:414951605或者1304139763 ========================
理工科類(lèi)
本科生畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
論文(設(shè)計(jì))題目
撥叉的加工工藝及其夾具
設(shè)計(jì)
作者所在系別
機(jī)電工程學(xué)院
作者所在專(zhuān)業(yè)
機(jī)械設(shè)計(jì)制造及其自動(dòng)化
作者所在班級(jí)
B13113
作 者 姓 名
王瀟
作 者 學(xué) 號(hào)
20134011337
指導(dǎo)教師姓名
趙忠澤
指導(dǎo)教師職稱(chēng)
副教授
完 成 時(shí) 間
2017
年
3
月
北華航天工業(yè)學(xué)院教務(wù)處制
說(shuō) 明
1.根據(jù)學(xué)?!懂厴I(yè)設(shè)計(jì)(論文)工作暫行規(guī)定》,學(xué)生必須撰寫(xiě)《畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告》。開(kāi)題報(bào)告作為畢業(yè)設(shè)計(jì)(論文)答辯委員會(huì)對(duì)學(xué)生答辯資格審查的依據(jù)材料之一。
2.開(kāi)題報(bào)告應(yīng)在指導(dǎo)教師指導(dǎo)下,由學(xué)生在畢業(yè)設(shè)計(jì)(論文)工作前期內(nèi)完成,經(jīng)指導(dǎo)教師簽署意見(jiàn)及所在專(zhuān)業(yè)教研室論證審查后生效。開(kāi)題報(bào)告不合格者需重做。
3.畢業(yè)設(shè)計(jì)開(kāi)題報(bào)告各項(xiàng)內(nèi)容要實(shí)事求是,逐條認(rèn)真填寫(xiě)。其中的文字表達(dá)要明確、嚴(yán)謹(jǐn),語(yǔ)言通順,外來(lái)語(yǔ)要同時(shí)用原文和中文表達(dá)。第一次出現(xiàn)縮寫(xiě)詞,須注出全稱(chēng)。
4.開(kāi)題報(bào)告中除最后一頁(yè)外均由學(xué)生填寫(xiě),填寫(xiě)各欄目時(shí)可根據(jù)內(nèi)容另加附頁(yè)。
5.閱讀的主要參考文獻(xiàn)應(yīng)在10篇以上(土建類(lèi)專(zhuān)業(yè)文獻(xiàn)篇數(shù)可酌減),其中外文資料應(yīng)占一定比例。本學(xué)科的基礎(chǔ)和專(zhuān)業(yè)課教材一般不應(yīng)列為參考資料。
6.參考文獻(xiàn)的書(shū)寫(xiě)應(yīng)遵循畢業(yè)設(shè)計(jì)(論文)撰寫(xiě)規(guī)范要求。
7.開(kāi)題報(bào)告應(yīng)與文獻(xiàn)綜述、一篇外文譯文和外文原文復(fù)印件同時(shí)提交,文獻(xiàn)綜述的撰寫(xiě)格式按畢業(yè)設(shè)計(jì)(論文)撰寫(xiě)規(guī)范的要求,字?jǐn)?shù)在2000字左右。
畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
學(xué)生姓名
王瀟
專(zhuān) 業(yè)
機(jī)制
班 級(jí)
B13113
指導(dǎo)教師姓名
趙忠澤
職 稱(chēng)
副教授
工作單位
機(jī)電工程學(xué)院
課題來(lái)源
課題性質(zhì)
課題名稱(chēng)
撥叉的加工工藝及其夾具設(shè)計(jì)
本設(shè)計(jì)的科學(xué)依據(jù)
(科學(xué)意義和應(yīng)用前景,國(guó)內(nèi)外研究概況,目前技術(shù)現(xiàn)狀、水平和發(fā)展趨勢(shì)等)
意義:提高零部件制造的可行性和經(jīng)濟(jì)性。研究其工藝性能以便能方便地生產(chǎn)出來(lái),使零部件的缺陷少、成本低,同時(shí)使其達(dá)到環(huán)保、高效、節(jié)能、使用壽命長(zhǎng)、工作可靠的目的,即所設(shè)計(jì)的零部件應(yīng)具有較好的結(jié)構(gòu)工藝性和良好的使用性。
前景:高度發(fā)達(dá)的制造業(yè)和先進(jìn)的制造技術(shù),已成為衡量一個(gè)國(guó)家實(shí)力和科技水平的重要標(biāo)志之一,成為一個(gè)國(guó)家在競(jìng)爭(zhēng)激烈的國(guó)際市場(chǎng)上獲勝的關(guān)鍵因素。
國(guó)內(nèi)外研究概況:國(guó)內(nèi)把自動(dòng)化生產(chǎn)的重點(diǎn)轉(zhuǎn)移到中、小批量生產(chǎn)領(lǐng)域中,這就要求加速數(shù)控機(jī)床的發(fā)展速度,以滿足市場(chǎng)要求。當(dāng)前數(shù)控設(shè)備正在采用最新技術(shù)成就,向著高速化,高精度化,智能化,多功能化及高可靠性的方向發(fā)展。利用NC編程技術(shù),特別是CNC編程中的自動(dòng)編程技術(shù)可以快速應(yīng)對(duì)市場(chǎng)的變化,提高產(chǎn)品的競(jìng)爭(zhēng)力。
國(guó)外自動(dòng)編程軟件技術(shù)被廣泛應(yīng)用于機(jī)械、電子、航空等領(lǐng)域,因其出色的表現(xiàn),在制造業(yè)領(lǐng)域有著極其廣闊的前景,將其應(yīng)用于撥叉類(lèi)零件機(jī)械加工工藝規(guī)程及優(yōu)化設(shè)計(jì),正是當(dāng)今制造行業(yè)所需要的。
設(shè)計(jì)內(nèi)容和預(yù)期成果
(具體設(shè)計(jì)內(nèi)容和重點(diǎn)解決的技術(shù)問(wèn)題、預(yù)期成果和提供的形式)
主要內(nèi)容:
1.設(shè)計(jì)撥叉類(lèi)零件的加工工藝及關(guān)鍵工序的夾具。
重點(diǎn)解決的技術(shù)問(wèn)題:
1. 設(shè)計(jì)撥叉類(lèi)零件的加工工藝;
2. 設(shè)計(jì)撥叉類(lèi)零件的加工工藝的過(guò)程中相關(guān)的工序所需要的專(zhuān)門(mén)夾具的設(shè)計(jì)。
預(yù)期成果和提供的形式:
1.提交撥叉零件的工藝過(guò)程卡與工序卡,提交相關(guān)工藝參數(shù)的設(shè)計(jì)計(jì)算資料。
2. 提交關(guān)鍵工序的夾具設(shè)計(jì)資料及夾具裝配圖、零件工作圖。
3. 在原理上不出現(xiàn)錯(cuò)誤,能夠出現(xiàn)操作上的可行性與可靠性。
擬采取設(shè)計(jì)方法和技術(shù)支持
(設(shè)計(jì)方案、技術(shù)要求、實(shí)驗(yàn)方法和步驟、可能遇到的問(wèn)題和解決辦法等)
設(shè)計(jì)方案及技術(shù)要求:
1. 根據(jù)設(shè)計(jì)內(nèi)容查閱相關(guān)期刊資料。
2. 利用網(wǎng)絡(luò)查找相關(guān)資料進(jìn)行修改。
3. 對(duì)實(shí)際生產(chǎn)中撥叉零件的應(yīng)用進(jìn)行統(tǒng)計(jì)總結(jié)。
實(shí)驗(yàn)方法和步驟:
1.利用CAD對(duì)撥叉零件進(jìn)行二維平面設(shè)計(jì),畫(huà)出整體零件圖;
2.確定加工工藝,繪制零件的機(jī)械制造工藝規(guī)程和機(jī)械加工工藝卡片;
3.設(shè)計(jì)關(guān)鍵工序的夾具,繪制夾具裝配圖和主要零件工作圖。
可能遇到的問(wèn)題和解決辦法:
工件本身剛性差,定位夾緊時(shí)容易引起工件的變形,就可以采用適當(dāng)?shù)妮o助支撐增加工件的剛性。
實(shí)現(xiàn)本項(xiàng)目預(yù)期目標(biāo)和已具備的條件
(包括過(guò)去學(xué)習(xí)、研究工作基礎(chǔ),現(xiàn)有主要儀器設(shè)備、設(shè)計(jì)環(huán)境及協(xié)作條件等)
預(yù)期目標(biāo):
1. 能熟練運(yùn)用機(jī)械制造工藝學(xué)的基本理論和夾具設(shè)計(jì)原理的知識(shí),正確地解決一個(gè)零件在加工中的定位,夾緊以及合理制定工藝流程等問(wèn)題的方法。
2. 通過(guò)對(duì)零件所有工序的機(jī)械制造工藝規(guī)程的制定和夾具設(shè)計(jì),學(xué)會(huì)工藝裝備設(shè)計(jì)的一般方法。
3. 設(shè)計(jì)過(guò)程重理論聯(lián)系實(shí)際,并學(xué)會(huì)使用手冊(cè)、查詢相關(guān)資料等,增強(qiáng)自己的解決工程實(shí)際問(wèn)題的能力。
已具備的條件:
1. 通過(guò)大學(xué)期間的學(xué)習(xí),對(duì)機(jī)械制造方面的知識(shí)有了一定的儲(chǔ)備,學(xué)習(xí)過(guò)《機(jī)械制造工藝學(xué)》等課程。多次的課程設(shè)計(jì)也讓我們有了一定設(shè)計(jì)經(jīng)驗(yàn)。
2.掌握CAD等二維設(shè)計(jì)軟件的使用方法。
3.在圖書(shū)館和網(wǎng)上查閱相關(guān)資料。
各環(huán)節(jié)擬定階段性工作進(jìn)度
(以周為單位)
1.第一周至第四周:查閱資料,完成開(kāi)題報(bào)告、文獻(xiàn)綜述、外文文獻(xiàn)翻譯。開(kāi)題報(bào)告的審閱。
2.第五周:總結(jié)前期工作,分析撥叉的作用并繪制零件圖。
3.第六周:確定加工工藝?yán)L制零件圖。
4.第七周:繪制毛坯圖。
5.第八周:繪制零件的機(jī)械制造工藝規(guī)程和機(jī)械加工工藝卡片。
6.第九周至第十周:設(shè)計(jì)關(guān)鍵工序的夾具,繪制夾具裝配圖和主要零件工作圖。
7.第十一周至第十二周:繪制夾具體和主要零件工作圖。
8.第十三周至十五周:整理最后資料,完成畢業(yè)設(shè)計(jì)論文。準(zhǔn)備答辯。
開(kāi) 題 報(bào) 告 審 定 紀(jì) 要
時(shí) 間
地點(diǎn)
主持人
參
會(huì)
教
師
姓 名
職 務(wù)(職 稱(chēng))
姓 名
職 務(wù)(職 稱(chēng))
論
證
情
況
摘
要
記錄人:
指
導(dǎo)
教
師
意
見(jiàn)
指導(dǎo)教師簽名: 年 月 日
教
研
室
意
見(jiàn)
教研室主任簽名: 年 月 日
5
本科生畢業(yè)設(shè)計(jì)(論文)文獻(xiàn)綜述
設(shè)計(jì) (論文)題目
撥叉的加工工藝及其夾具
設(shè)計(jì)
作者所在系別
機(jī)電工程學(xué)院
作者所在專(zhuān)業(yè)
機(jī)械設(shè)計(jì)制造及其自動(dòng)化
作者所在班級(jí)
B13113
作 者 姓 名
王瀟
作 者 學(xué) 號(hào)
20134011337
指導(dǎo)教師姓名
趙忠澤
指導(dǎo)教師職稱(chēng)
副教授
完 成 時(shí) 間
2017
年
3
月
北華航天工業(yè)學(xué)院教務(wù)處制
說(shuō) 明
1.根據(jù)學(xué)?!懂厴I(yè)設(shè)計(jì)(論文)工作暫行規(guī)定》,學(xué)生必須撰寫(xiě)畢業(yè)設(shè)計(jì)(論文)文獻(xiàn)綜述。文獻(xiàn)綜述作為畢業(yè)設(shè)計(jì)(論文)答辯委員會(huì)對(duì)學(xué)生答辯資格審查的依據(jù)材料之一。
2.文獻(xiàn)綜述應(yīng)在指導(dǎo)教師指導(dǎo)下,由學(xué)生在畢業(yè)設(shè)計(jì)(論文)工作前期內(nèi)完成,由指導(dǎo)教師簽署意見(jiàn)并經(jīng)所在專(zhuān)業(yè)教研室審查。
3.文獻(xiàn)綜述各項(xiàng)內(nèi)容要實(shí)事求是,文字表達(dá)要明確、嚴(yán)謹(jǐn),語(yǔ)言通順,外來(lái)語(yǔ)要同時(shí)用原文和中文表達(dá)。第一次出現(xiàn)縮寫(xiě)詞,須注出全稱(chēng)。
4.學(xué)生撰寫(xiě)文獻(xiàn)綜述,閱讀的主要參考文獻(xiàn)應(yīng)在10篇以上(土建類(lèi)專(zhuān)業(yè)文獻(xiàn)篇數(shù)可酌減),其中外文資料應(yīng)占一定比例。本學(xué)科的基礎(chǔ)和專(zhuān)業(yè)課教材一般不應(yīng)列為參考資料。
5.文獻(xiàn)綜述的撰寫(xiě)格式按畢業(yè)設(shè)計(jì)(論文)撰寫(xiě)規(guī)范的要求,字?jǐn)?shù)在2000字左右。文獻(xiàn)綜述應(yīng)與開(kāi)題報(bào)告同時(shí)提交。
畢 業(yè) 設(shè) 計(jì)(論 文)文 獻(xiàn) 綜 述
1 前言
機(jī)械加工工藝及夾具設(shè)計(jì)是畢業(yè)前對(duì)專(zhuān)業(yè)知識(shí)的綜合運(yùn)用訓(xùn)練。制造技術(shù)已經(jīng)是生產(chǎn)、國(guó)際經(jīng)濟(jì)競(jìng)爭(zhēng)、產(chǎn)品革新的一種重要手段,所有國(guó)家都在尋求、獲得、開(kāi)發(fā)和利用它。它正被看作是現(xiàn)代國(guó)家經(jīng)濟(jì)上獲得成功的關(guān)鍵因素。
機(jī)械加工工藝是規(guī)定產(chǎn)品或零件機(jī)械加工工藝過(guò)程和操作方法。生產(chǎn)規(guī)模的大小、工藝水平的高低以及解決各種工藝問(wèn)題的方法和手段都要通過(guò)機(jī)械加工工藝來(lái)體現(xiàn)。而機(jī)床夾具是在機(jī)床上用以裝夾工件的一種裝置,其作用是使工件相對(duì)于機(jī)床或刀具有個(gè)正確的位置,并在加工過(guò)程中保持這個(gè)位置不變。它們的研究對(duì)機(jī)械工業(yè)有著很重要的意義。
2 機(jī)械加工工藝及夾具設(shè)計(jì)的發(fā)展
2.1 發(fā)展歷史
從1949年以來(lái),我國(guó)機(jī)械工業(yè)有了很大的發(fā)展,已經(jīng)成為工業(yè)中產(chǎn)品門(mén)類(lèi)比較齊全、具有相當(dāng)規(guī)模和一定技術(shù)基礎(chǔ)的產(chǎn)業(yè)部門(mén)之一,其機(jī)械加工和夾具也有很大的發(fā)展,但是與工業(yè)發(fā)達(dá)國(guó)家相比,我們這方面的水平還存在著階段性的差距,主要表現(xiàn)在機(jī)械產(chǎn)品質(zhì)量和水平不夠高,加工工藝過(guò)程不合理,夾具應(yīng)用也比較少,使其加工工人勞動(dòng)強(qiáng)度大,加工出來(lái)的產(chǎn)品也不理想。
2.2發(fā)展現(xiàn)狀
現(xiàn)在,各工業(yè)化國(guó)家都把制造技術(shù)視為當(dāng)代科技發(fā)展為活躍的領(lǐng)域和國(guó)際間科技競(jìng)爭(zhēng)的主戰(zhàn)場(chǎng),制定了一系列振興計(jì)劃、建立世界級(jí)制造技術(shù)中心,紛紛把先進(jìn)制造技術(shù)列為國(guó)家關(guān)鍵技術(shù)和優(yōu)先發(fā)展領(lǐng)域。
機(jī)械加工工藝及夾具隨著制造技術(shù)的發(fā)展也突飛猛進(jìn)。機(jī)械加工工藝以各個(gè)工廠的具體情況不同,其加工的規(guī)程也有很大的不同。突破已往的死模式,使其隨著情況的不同具有更加合理的工藝過(guò)程,也使產(chǎn)品的質(zhì)量大大提高。制定加工工藝雖可按情況合理制定,但也要滿足其基本要求:在保證產(chǎn)品質(zhì)量的前提下,盡可能提高勞動(dòng)生產(chǎn)率和降低加工成本。并在充分利用本工廠現(xiàn)有生產(chǎn)條件的基礎(chǔ)上,盡可能采用國(guó)內(nèi)、外先進(jìn)工藝技術(shù)和經(jīng)驗(yàn)。還應(yīng)保證操作者良好的勞動(dòng)條件。但我國(guó)現(xiàn)階段還是主要依賴(lài)工藝人員的經(jīng)驗(yàn)來(lái)編制工藝,多半不規(guī)定工步和切削用量,工時(shí)定額也憑經(jīng)驗(yàn)來(lái)確定,十分粗略,缺乏科學(xué)依據(jù),難以進(jìn)行合理的經(jīng)濟(jì)核算。
機(jī)床夾具最早出現(xiàn)在18世紀(jì)后期。隨著科學(xué)技術(shù)的不斷進(jìn)步,夾具已從一種輔助工具發(fā)展成為門(mén)類(lèi)齊全的工藝裝備。
國(guó)際生產(chǎn)研究協(xié)會(huì)的統(tǒng)計(jì)表明,目前中、小批多品種生產(chǎn)的工件品種已占工件種類(lèi)總數(shù)的85%左右?,F(xiàn)代生產(chǎn)要求企業(yè)所制造的產(chǎn)品品種經(jīng)常更新?lián)Q代,以適應(yīng)市場(chǎng)的需求與競(jìng)爭(zhēng)。然而,一般企業(yè)都仍習(xí)慣于大量采用傳統(tǒng)的專(zhuān)用夾具,一般在具有中等生產(chǎn)能力的工廠里,約擁有數(shù)千甚至近萬(wàn)套專(zhuān)用夾具;另一方面,在多品種生產(chǎn)的企業(yè)中,每隔3~4年就要更新50~80%左右專(zhuān)用夾具,而夾具的實(shí)際磨損量?jī)H為10~20%左右。特別是近年來(lái),數(shù)控機(jī)床、加工中心、成組技術(shù)、柔性制造系統(tǒng)(FMS)等新加工技術(shù)的應(yīng)用,對(duì)機(jī)床夾具提出了如下新的要求:
1)能迅速而方便地裝備新產(chǎn)品的投產(chǎn),以縮短生產(chǎn)準(zhǔn)備周期,降低生產(chǎn)成本;
2)能裝夾一組具有相似性特征的工件;
3)能適用于精密加工的高精度機(jī)床夾具;
4)能適用于各種現(xiàn)代化制造技術(shù)的新型機(jī)床夾具;
5)采用以液壓站等為動(dòng)力源的高效夾緊裝置,以進(jìn)一步減輕勞動(dòng)強(qiáng)度和提高勞動(dòng)生產(chǎn)率;
6)提高機(jī)床夾具的標(biāo)準(zhǔn)化程度。
2.3發(fā)展趨勢(shì)
長(zhǎng)期以來(lái),加工工藝編制是由工藝人員憑經(jīng)驗(yàn)進(jìn)行的。如果由幾位工藝員各自編制同一個(gè)零件的工藝規(guī)程,其方案一般各不相同,而且很可能都不是最佳方案。這是因?yàn)楣に囋O(shè)計(jì)涉及的因素多,因果關(guān)系錯(cuò)綜復(fù)雜。CAPP將是機(jī)械加工工藝的發(fā)展趨勢(shì),它不僅提高了工藝設(shè)計(jì)的質(zhì)量,而且使工藝人員從繁瑣重復(fù)的工作中擺脫出來(lái),集中精力去考慮提高工藝水平和產(chǎn)品質(zhì)量問(wèn)題。
2.3.1夾具的發(fā)展趨勢(shì)
現(xiàn)代機(jī)床夾具的發(fā)展趨勢(shì)主要表現(xiàn)為標(biāo)準(zhǔn)化、高效化、精密化和柔性化四個(gè)方面。
(1)標(biāo)準(zhǔn)化 機(jī)床夾具的目的就在于提高生產(chǎn)效率,這樣也就必使其具有標(biāo)準(zhǔn)化和通用化,而機(jī)床夾具的標(biāo)準(zhǔn)化與通用化是相互聯(lián)系的兩個(gè)方面。目前我國(guó)已有夾具零件及部件的國(guó)家標(biāo)準(zhǔn):GB/T2148~T2259-91以及各類(lèi)通用夾具、組合夾具標(biāo)準(zhǔn)等。機(jī)床夾具的標(biāo)準(zhǔn)化,有利于夾具的商品化生產(chǎn),有利于縮短生產(chǎn)準(zhǔn)備周期,降低生產(chǎn)總成本。
(2)高效化 高效化夾具主要用來(lái)減少工件加工的基本時(shí)間和輔助時(shí)間,以提高勞動(dòng)生產(chǎn)率,減輕工人的勞動(dòng)強(qiáng)度。常見(jiàn)的高效化夾具有自動(dòng)化夾具、高速化夾具和具有夾緊力裝置的夾具等。例如,在銑床上使用電動(dòng)虎鉗裝夾工件,效率可提高5倍左右;在車(chē)床上使用高速三爪自定心卡盤(pán),可保證卡爪在試驗(yàn)轉(zhuǎn)速為9000r/min的條件下仍能牢固地夾緊工件,從而使切削速度大幅度提高。目前,除了在生產(chǎn)流水線、自動(dòng)線配置相應(yīng)的高效、自動(dòng)化夾具外,在數(shù)控機(jī)床上,尤其在加工中心上出現(xiàn)了各種自動(dòng)裝夾工件的夾具以及自動(dòng)更換夾具的裝置,充分發(fā)揮了數(shù)控機(jī)床的效率。
(3)精密化 機(jī)床夾具的精度會(huì)直接影響到零件的加工精度,而隨著機(jī)械產(chǎn)品精度的日益提高,勢(shì)必相應(yīng)提高了對(duì)夾具的精度要求。精密化夾具的結(jié)構(gòu)類(lèi)型很多,例如用于精密分度的多齒盤(pán),其分度精度可達(dá)±0.1";用于精密車(chē)削的高精度三爪自定心卡盤(pán),其定心精度為5μm。這些精密化的夾具為以后零件加工的精度提供了保證。
(4)柔性化 機(jī)床夾具的柔性化與機(jī)床的柔性化相似,它是指機(jī)床夾具通過(guò)調(diào)整、組合等形式,以適應(yīng)工藝可變因素的能力。工藝的可變因素主要有:工序特征、生產(chǎn)批量、工件的形狀和尺寸等。具有柔性化特征的新型夾具種類(lèi)主要有:組合夾具、通用可調(diào)夾具、成組夾具、模塊化夾具、數(shù)控夾具等。為適應(yīng)現(xiàn)代機(jī)械工業(yè)多品種、中小批量生產(chǎn)的需要,擴(kuò)大夾具的柔性化程度,改變專(zhuān)用夾具的不可拆結(jié)構(gòu)為可拆結(jié)構(gòu),發(fā)展可調(diào)夾具結(jié)構(gòu),將是當(dāng)前夾具發(fā)展的主要方向。
2.3.1機(jī)械加工制造技術(shù)的發(fā)展趨勢(shì)
(1)特種加工 它是指一些物理的、化學(xué)的加工方法,如電火花加工、電解加工、超聲波加工、激光加工、離子束加工等。特種加工方法的主要對(duì)象是難加工材料的加工,如金剛石、陶瓷等超硬材料的加工,其加工精度可達(dá)分子級(jí)加工單位或原子級(jí)加工單位,所以它又常常是精密加工和超精密加工的重要手段。特種加工與傳統(tǒng)加工相結(jié)合的復(fù)合加工有較大的發(fā)展前途。
(2)快速成形 利用離散、堆積成形概念,可將一個(gè)三維實(shí)體分解為若干二維實(shí)體制造出來(lái),再經(jīng)堆積而構(gòu)成三維實(shí)體。
(3)精密工程 它包括精密加工的超精密加工技術(shù)、微細(xì)加工和超微細(xì)加工技術(shù)、微型機(jī)械和納米技術(shù)等方面。當(dāng)前,以納米技術(shù)為代表的超精密加工技術(shù)和以微細(xì)加工為手段的微型機(jī)械技術(shù)有重要意義,它們代表了這一時(shí)期精密工程的方向。
(4)傳統(tǒng)加工工藝的改造和革新 這一方面的技術(shù)潛力很大,如高速切削、超高速切削、強(qiáng)力磨削、超硬材料磨具的出現(xiàn)都對(duì)加工理論的發(fā)展、加工質(zhì)量和效率的提高有重要意義。另一方面,舊設(shè)備的改造和挖潛,如普通機(jī)床改造成數(shù)控機(jī)床等,對(duì)機(jī)械工業(yè)的發(fā)展和提高是不容忽視的。
3 簡(jiǎn)單的評(píng)述
綜上,機(jī)械加工工藝及夾具隨著科技的發(fā)展都使計(jì)算機(jī)技術(shù)、數(shù)控技術(shù)、控制論及系統(tǒng)工程與制造技術(shù)的結(jié)合為制造系統(tǒng),形成現(xiàn)代制造工程學(xué)。而物料流、能量流、信息流是組成制造系統(tǒng)的三個(gè)基本要素。現(xiàn)代加工都為集成化的系統(tǒng)加工,這雖減輕了工人的勞動(dòng)強(qiáng)度,但同時(shí)對(duì)工人的知識(shí)水平要求較高。這需要我們?nèi)轿坏恼J(rèn)知現(xiàn)代科技知識(shí)。因此,在以后的學(xué)習(xí)中需要我們?nèi)轿坏膶W(xué)習(xí)其各個(gè)相關(guān)領(lǐng)域的知識(shí),不能只注重一點(diǎn),為將來(lái)的人才戰(zhàn)略提出了新的要求。
主要參考文獻(xiàn)
[1] 王先逵編著.機(jī)械制造工藝學(xué)(上下冊(cè))[M].北京:清華大學(xué)出版社,1989.
[2] 李德慶,吳錫英編著.計(jì)算機(jī)輔助制造[M].北京:清華大學(xué)出版社,1992 .
[3] 趙家齊.機(jī)械制造工藝學(xué)課程設(shè)計(jì)指導(dǎo)書(shū)[M].北京:機(jī)械工業(yè)出版社,2008.
[4] 李旦,邵東向.機(jī)床專(zhuān)用夾具圖冊(cè)[M].北京:哈爾濱工業(yè)大學(xué)出版社,2005.
[5] 陳宏鈞.實(shí)用機(jī)械加工工藝手冊(cè)[M].北京:機(jī)械工業(yè)出版社,2005.
[6] 孫大涌主編.先進(jìn)制造技術(shù)[M].北京:機(jī)械工業(yè)出版社,2000.
[7] 王力行.專(zhuān)用機(jī)床夾具安裝精度分析[J].裝備制造技術(shù),2008,(9):163~164
[8] 李超.平面加工專(zhuān)用夾具的設(shè)計(jì)[J].機(jī)械工程師.2006,(12):130
[9] Machine Tool Metalworking John L.Feirer ,1973.
[10] Handbook of Machine Tools Manfred weck ,1984 .
[11] Haffman E G. Jig and Fixture Design.America, VNR Co.,1980.
[12] Boyes W E. Jigs and Fixture .America,SME,1982.
4
畢 業(yè) 設(shè) 計(jì)(論 文)文 獻(xiàn) 綜 述
指導(dǎo)教師意見(jiàn)
指導(dǎo)教師:
年 月 日
專(zhuān)業(yè)教研室審查意見(jiàn)
負(fù)責(zé)人:
年 月 日
5
本科生畢業(yè)設(shè)計(jì) (論文)
外 文 翻 譯
原 文 標(biāo) 題
?Gear manufacturing methods
譯 文 標(biāo) 題
齒輪的加工方法
作者所在系別
機(jī)械工程學(xué)院
作者所在專(zhuān)業(yè)
機(jī)械設(shè)計(jì)制造及其自動(dòng)化
作者所在班級(jí)
B13113
作 者 姓 名
王瀟
作 者 學(xué) 號(hào)
200134011337
指導(dǎo)教師姓名
趙忠澤
指導(dǎo)教師職稱(chēng)
副教授
完 成 時(shí) 間
2017
年
3
月
北華航天工業(yè)學(xué)院教務(wù)處制
譯文標(biāo)題
齒輪的加工方法
原文標(biāo)題
Gear manufacturing methods
作 者
Zhang Baozhu
譯 名
張寶珠
國(guó) 籍
中國(guó)
原文出處
百度文庫(kù)
譯文:
齒輪的加工方法
加工齒輪輪齒有兩種基本的方法:產(chǎn)生過(guò)程和形成過(guò)程。當(dāng)一個(gè)輪齒產(chǎn)生時(shí),工件和切削或磨削工具,是不斷嚙合在一起的,輪齒的形式是由刀具決定的。換句話說(shuō),工件和刀具是共軛的。滾齒機(jī),成型切割機(jī),剃齒機(jī),磨床都使用這個(gè)原理。
當(dāng)一個(gè)輪齒形成時(shí),該刀具是呈正被加工出來(lái)的空間的形狀的。一些磨床使用此原理,與一個(gè)指示裝置配套在一起使輪齒一個(gè)挨一個(gè)形成。刀就是同時(shí)加工所有輪齒形成刀具的例子。
成型
成型本質(zhì)上是與平面圖類(lèi)似的,但采用了圓形的切削刀具替代了齒條,由此產(chǎn)生的往復(fù)慣性的減少,允許更高的行程速度:現(xiàn)代的成型切割汽車(chē)齒輪可以以每分鐘2000切割行程運(yùn)行。切削刀具的形狀大致是與漸開(kāi)線齒輪相同的,但輪齒的頂端是圓形的。
切削刀具和工件之間的發(fā)電驅(qū)動(dòng)器之間不涉及機(jī)架或連接螺釘 ,因?yàn)橹挥袌A周運(yùn)動(dòng)在涉及的范圍內(nèi)。切割機(jī)每走一個(gè)行程,工具和工件通常在切線方向移動(dòng)0.5毫米。在返回的行程中,刀具必須被縮進(jìn)約1毫米留有間隙,否則就會(huì)產(chǎn)生摩擦,馬上發(fā)生故障。這類(lèi)型機(jī)床的速度被限制,保證大約50千克重的切割機(jī)和軸承可移動(dòng)1毫米的距離。加速度所涉及的扭矩可增加5000N的力,但必須保持高的精度。
成型機(jī)的優(yōu)點(diǎn)是生產(chǎn)效率相對(duì)較高,可能在齒頂上切出直角。不幸的是,對(duì)于斜齒輪,螺旋導(dǎo)向器需要在直線運(yùn)動(dòng)中施加旋轉(zhuǎn)運(yùn)動(dòng),這種螺旋導(dǎo)向器不容易生產(chǎn),也不便宜。所以該方法只適合在斜齒輪上的長(zhǎng)距離,因?yàn)閷?duì)每個(gè)不同的螺旋角就要生產(chǎn)特殊的刀具和導(dǎo)向器。成型機(jī)的一個(gè)很大的優(yōu)點(diǎn),是它可以生產(chǎn)環(huán)形齒輪,例如那些需要大型epicyclie周轉(zhuǎn)圓的驅(qū)動(dòng)器。
非常高的精確度是十分重要的,而成型切割機(jī)的不準(zhǔn)確性也是相當(dāng)要緊的。因?yàn)樗鼈兛赡苻D(zhuǎn)移到削減齒輪。很明顯側(cè)面的錯(cuò)誤將轉(zhuǎn)移,但比起離心機(jī)或破碎機(jī)給予的特點(diǎn), “掉落的輪齒” ,是相當(dāng)不明顯的。對(duì)于掉齒有幾個(gè)原因,但它發(fā)生最頻繁的是,當(dāng)工件的直徑大約是刀具直徑的一半,1.5倍或2.5倍時(shí)。如果刀具開(kāi)始在高點(diǎn),在最后完成漸開(kāi)線齒輪期間結(jié)束在低點(diǎn),在刀具上峰與峰的偏心誤差發(fā)生在最后的漸開(kāi)線切割齒輪的第一個(gè)和最后一個(gè)齒輪之間。當(dāng)?shù)毒叩睦鄯e螺距誤差可能剛好超過(guò)25微米時(shí),切割輪齒時(shí)就會(huì)有一個(gè)突然的這個(gè)數(shù)量的螺距誤差。在機(jī)床上切割的下一個(gè)齒輪可能在鄰近的節(jié)圓上是好的,如果在切割機(jī)上最后的切割碰巧發(fā)生在一個(gè)有利的位置。
各種嘗試已經(jīng)作出,防止這種效應(yīng),特別是通過(guò)連續(xù)旋轉(zhuǎn),沒(méi)有任何進(jìn)一步的刀料,但如果成型機(jī)是不是很堅(jiān)固,刀具不是很尖銳,然后沒(méi)有進(jìn)一步的切割發(fā)生,誤差將不會(huì)被消除。
滾齒
滾齒是最常用的金屬切削方法,使用機(jī)架產(chǎn)生的原理,但避免了由在旋轉(zhuǎn)切削機(jī)上增加許多齒條引起的緩慢的往復(fù)運(yùn)動(dòng)。齒條在軸線方向上替換為切口蝸桿。 齒條不能為整個(gè)輪齒的工作長(zhǎng)度產(chǎn)生正確的漸開(kāi)線形狀,因?yàn)樗麄冊(cè)趫A弧軌跡上移動(dòng),所以滾刀緩慢地沿輪齒走刀,在軸向或法向或傾斜的滾齒機(jī)螺旋線方向上。
金屬去除率高,因?yàn)槁菪姷痘蚬ぜ](méi)有做往復(fù)運(yùn)動(dòng)的需要,所以40m/min的切割速度可用于傳統(tǒng)的滾刀,切割速度高達(dá)150m/min的用于硬質(zhì)合金滾刀。通常一個(gè)直徑為100毫米的滾刀轉(zhuǎn)速達(dá)到100rpm ,所以20個(gè)齒的工件以每分鐘5轉(zhuǎn)的速度旋轉(zhuǎn)。工件的每個(gè)旋轉(zhuǎn)運(yùn)動(dòng)將對(duì)應(yīng)于0.75毫米的進(jìn)給量,所以滾刀會(huì)提前通過(guò)工件約每分鐘4毫米。對(duì)于汽車(chē)生產(chǎn),近似多頭開(kāi)始的滾刀,可用于每轉(zhuǎn)3毫米的粗糙進(jìn)給量,以便在切割機(jī)上達(dá)到100rpm的速度,一個(gè)兩頭開(kāi)始的滾刀和20個(gè)齒的齒輪可提供每分鐘30毫米的進(jìn)給速率。
粗糙進(jìn)給速率的缺點(diǎn)是在工件上會(huì)留下明顯的標(biāo)志,尤其是在齒根,每轉(zhuǎn)在進(jìn)給速率的空間顯示一種圖案。齒側(cè)標(biāo)記的表面波紋比齒跟要少,當(dāng)有一個(gè)隨后的整理操作時(shí),如剃齒或磨削,這一點(diǎn)就不重要了。當(dāng)沒(méi)有進(jìn)一步的操作時(shí),每轉(zhuǎn)的進(jìn)給量必須加以限制,保證粗糙度在一個(gè)界限以下,通常這決定于潤(rùn)滑條件。齒根上波紋的高度指定乘以每轉(zhuǎn)的進(jìn)給量,然后除以滾刀直徑的4倍。1毫米的進(jìn)給量和100毫米的直徑可產(chǎn)生2.5微米高的波紋。對(duì)齒側(cè)波紋大約跟cos70一樣大,即約0.85微米。
滾齒機(jī)的精度對(duì)齒距和螺旋線來(lái)說(shuō),通常很高,假設(shè)機(jī)床維持不變,漸開(kāi)線單單決定于滾刀齒廓的精度。漸開(kāi)線的形式隨著滾刀的切入產(chǎn)生,在滾刀上留有裂痕時(shí),漸開(kāi)線是不真實(shí)的。但是,如果說(shuō)有14條切線產(chǎn)生在曲率半徑約20毫米的齒側(cè),從真實(shí)的漸開(kāi)線分離,僅僅大約0.5微米。滾刀的制造和安裝誤差可以超過(guò)10微米。使用兩頭開(kāi)始的滾刀或斜滾齒機(jī)可增加誤差水平,因?yàn)闈L刀的齒距誤差的轉(zhuǎn)移到切割齒輪上。
拉削
? 拉削不被用于斜齒輪,但對(duì)內(nèi)齒直齒輪時(shí)十分有用的。聯(lián)系全局來(lái)看,拉削的最重要的用途是用任何其他的方法都不容易加工的內(nèi)花鍵。跟所有的拉削方法一樣,這種方法對(duì)批量生產(chǎn)是經(jīng)濟(jì)的,因?yàn)榘惭b成本較高。
拉削技術(shù)對(duì)內(nèi)齒斜齒輪主要的應(yīng)用是由Gleasons在其G-TRAC機(jī)床上。這臺(tái)機(jī)器的運(yùn)作,增加滾齒切割機(jī)的有效半徑至無(wú)限遠(yuǎn),使刀具的每一個(gè)齒都能在一條直線上轉(zhuǎn)動(dòng),而不是對(duì)在一個(gè)半徑上。這使得切割行為延長(zhǎng)超過(guò)齒輪的整個(gè)端面寬度,替代了傳統(tǒng)的滾刀每轉(zhuǎn)0.75毫米的進(jìn)給量。由此產(chǎn)生的過(guò)程中提供了非常高的生產(chǎn)率,更適合于美國(guó),美國(guó)的產(chǎn)量在整個(gè)歐洲來(lái)說(shuō),相對(duì)較低,盡管初始成本高,但非常具有競(jìng)爭(zhēng)力。
拉削提供了較高的精確度和良好的表面光潔度,但象所有切削過(guò)程一樣,僅限于 “軟”材料,必須隨后進(jìn)行表面淬火或熱處理,使其變形。
剃齒
剃齒切割機(jī)看起來(lái)像一個(gè)在齒根有著額外間隙的齒輪,齒側(cè)有槽,提供切削邊緣。它是運(yùn)行在網(wǎng)格與粗糙齒輪軸交叉處,以便與做剩余運(yùn)動(dòng)的輪齒的相對(duì)速度有理論聯(lián)系點(diǎn)。該剃齒刀的輪齒相對(duì)靈活的彎曲,所以當(dāng)它們?cè)趦蓚€(gè)齒輪的輪齒間兩兩接觸時(shí),只有有效地運(yùn)作。齒輪和刀具橫向在工作面以高轉(zhuǎn)速運(yùn)轉(zhuǎn)時(shí),大約100毫米的材料被去除。周期時(shí)間可以少于半分鐘,機(jī)床并不昂貴,但刀具是精密的,很難制造。在剃齒機(jī)邊緣容易對(duì)齒廓作出調(diào)整,然后凸緣能被利用。剃齒可以使用刀具在凸肩處完成,向下到某一深度,無(wú)軸向運(yùn)動(dòng)。這種方法速度快,但需要更復(fù)雜的刀具設(shè)計(jì)。
磨削
磨削是非常重要的,因?yàn)樗怯不诩庸さ凝X輪的主要途徑。當(dāng)要求高精度時(shí),熱處理不足以使其變形,那么,磨削是很必要的。
磨削的最簡(jiǎn)單的方法往往被稱(chēng)為orcutt方法。車(chē)輪的輪廓使用單點(diǎn)鉆石精確的裝飾使其變形,被模板切割控制到所需要的真實(shí)形狀。一個(gè)縮放儀6:1的比例是常用的。車(chē)輪的輪廓然后沿齒輪作軸向往復(fù)運(yùn)動(dòng),齒輪旋轉(zhuǎn)允許受螺旋角的影響。當(dāng)一個(gè)齒形已經(jīng)完成,通常包括100微米的金屬去除,齒輪被指引到下一個(gè)齒的空間。這種方法可清楚查看,但一貫有著高的精度要求。安裝尺寸過(guò)長(zhǎng),因?yàn)槿绻?shù),齒數(shù),螺旋角或齒廓校正線改變時(shí),需要不同的裝飾模板。
最快的磨削方法跟滾齒機(jī)使用相同的原理,但取代了憑借磨削輪增加切口和減輕的蝸桿,磨削輪是機(jī)架上的一節(jié)。由于高的表面速度的需求,砂輪的直徑被增大,使直徑為0.5米的砂輪可以超過(guò)2000 rpm的速度運(yùn)轉(zhuǎn),給予必要的1000米/分鐘的速度。只有單頭蝸桿可在砂輪上切削,但齒輪轉(zhuǎn)速很高,通常情況下 為100rpm。因此很難設(shè)計(jì)驅(qū)動(dòng)系統(tǒng)提供精度和剛度。該過(guò)程的精度是在合理的高水平,雖然在磨削期間有砂輪和工件的轉(zhuǎn)向變化的一種傾向。所以砂輪的形式可能需要補(bǔ)償機(jī)床撓度的影響。磨削輪上一代蝸桿的形狀是一個(gè)緩慢的進(jìn)程,因?yàn)檠b飾的鉆石或滾子,不僅要形成機(jī)架上的輪廓,而且當(dāng)砂輪旋轉(zhuǎn)時(shí)必須做軸向運(yùn)動(dòng)。一旦砂輪已經(jīng)形成,齒輪必須被快速的磨削,直到要求再做調(diào)整。這就是用小齒輪創(chuàng)造高生產(chǎn)率的最流行的方法,通常被稱(chēng)為reishauer方法。
大型齒輪通常由Maag方法產(chǎn)生,與其方法中的規(guī)劃相似,但使用大直徑的磨削輪,形成側(cè)面的理論嚙合齒條。非常大的直徑的齒輪不能被輕易移動(dòng),所以齒輪基本上是平穩(wěn)的,而磨削輪的活動(dòng)部分在螺旋線方向上作往復(fù)運(yùn)動(dòng)。磨削輪只在斜齒輪的端面上有一小部分是接觸的,所以,當(dāng)在一年內(nèi)制造這個(gè)齒數(shù)的幾個(gè)齒輪時(shí),這并不重要。與形成磨削相同,磨削后,一對(duì)側(cè)面的齒輪被指引到下一對(duì)。
類(lèi)似的方法用于中等大小的齒輪,這種齒輪有固定的輪子,而粗糙的齒輪是走過(guò)了車(chē)輪下。齒輪相應(yīng)的旋轉(zhuǎn)運(yùn)動(dòng)由輪上的皮帶控制,這條皮帶從一圓柱體的節(jié)圓直徑上散開(kāi),使齒輪相對(duì)齒條的運(yùn)動(dòng)是正確的。
另一種方法,尼羅河的做法,采用了車(chē)輪,它被形成提供了理論上的嚙合機(jī)架,而不是象Maag方法一樣用兩個(gè)杯輪子。這種做法最適合在小齒輪上中等精度的工作,速度介于reishauer方法和Maag方法之間。
所有磨削加工與切削加工相比,是緩慢和昂貴的,因此只用于精度要求至關(guān)重要的條件下。一個(gè)粗略的經(jīng)驗(yàn)法則是,磨削會(huì)增加齒輪的切削成本,這是10個(gè)因素之一,但輪齒的成本,往往只占變速箱總費(fèi)用的一小部分。令人驚訝地是,可獲得的精度不是非常取決于齒輪的大小,齒輪的直徑是5米或50米,可獲得的節(jié)圓漸開(kāi)線和螺旋線的精度是預(yù)想的5微米或更好,比起任何其他因素,更取決于操作工和檢查員的技術(shù)和耐心。
它往往是假定磨削將去除在粗的階段產(chǎn)生的所有誤差。不幸的是,磨床是較靈活的,所以砂輪有一個(gè)按照以往誤差的趨勢(shì)。誤差將因此減少,但并沒(méi)有完全消除,除非很多切削方法被使用。任何時(shí)候磨削過(guò)程給出的都一致的結(jié)果,這是可在粗切的階段檢測(cè)精度是可取的。唯一的例外是磨削的形成過(guò)程,將不跟隨漸開(kāi)線誤差,但仍允許螺旋線和節(jié)圓誤差。
原文:
Gear manufacturing methods
There are two basic methods of manufacturing gear teeth: the generating process and the forming process. when a gear tooth is generated, the workpiece and the cutting or grinding tool are in continuous mesh and the tooth form is generated by the tool. In other words, the work and the tool are conjugated to each other. hobbing :machines, shaper cutters, shaving machines, and grinders use this principle.
When a gear tooth is formed, the tool is in the shape of the space that is being machined out. Some grinding machines use this principle with an indexing mechianism which allows the gear teeth to be formed tooth by tooth. Broaches are examples of form tools that machine all the gear teeth simultaneously.
shaping
Shaping is inherently similar to planning but uses a circular cuttrer instead of rack and the resulting reduction in the reciprocating inertia allows much higher stroking speeds: modern shapers cutting car gears can run at 2,000 cutting strokes per minmute. The shape of the cutter is roughly the same as an involute gear but the tips of the teeth are rounded.
The generating drive between cutter and workpiece does not involve a rack or leadscrew since only circular motion in involved. The tool and workpiece move tangential typically 0.5 mm for each stroke of the cutter. On the return stroke the cutter must be retracted about 1 mm to give clearance otherwise tool rub occurs on the backstroke and failure is rapid. The speed on this type of machine is limited by the rate at which some 50kg of cutter and bearings can be moved a distance of 1 mm. the accelerations involved tequire forces of the order of 5000N yet high accuracy must be maintained.
The advantages of shaping are that production rates are relatively high and that it is possible to cut right up to a shoulder. Unfortunately, for helical gears, a helical guide is required to impose a rotational motion on the stroking motion; such helical guides cannot be produced easily or cheaply so the method is only suitable for long runs with helical gears since special cutters and guides must be manufactured for each different helix angle. A great advantage of shaping is its ability to annular gears such as those required for large epicyclie drives.
When very high accuracy is of importance the inaccuracies in the shaping cutter matter since they may transfer to the cut gear. It is obvious that profile errors will transfer but it is less obvious than an eccentrically mounted or ground cutter will give a characteristic “dropped tooth”. There are several causes for “dropped tooth” but it occurs most commonly when the diameter of the workpiece is about half, one and half, two and a half, etc, times the cutter diameter. If the cutter starts on a high point and finishes on a low point during the final finishing revolution of the gear the peak to peak eccentricity errors in the cutter occurs between the last and the first tooth of the final revolution of the cut gear; as the cumulative pitch error of the cutter may well be over 25 microns there is a sudden pitch error of this amount on the cut gear. The next gear cut on the machine may however be very good on adjacent pitch if the final cut happened to start in a favorable position on the cutter.
Various attempts have been made to prevent this effect, in particular by continuing rotation without any further cutter infeed but if the shaping machine is not very rigid and the cutter very sharp then no further cutting will occur and the error will not be removed.
hobbing
hobbing, the most used metal cutting method, uses the rack generating principle but avoids slow reciprocation by mounting many “racks ” on a rotating cutter. The “racks” are displaced axially to form a gashed worm. The “racks” do not generate the correct involute shape for the whole length of the teeth since they are moving on a circular path and so the hob is fed slowly along the teeth either axially in normal or in the direction of the helix in “oblique” hobbing.
Metal removal rates are high since no reciprocation of hob or workpiece is required and so cutting speeds of 40 m/min can be used for conventional hobs and up to 150m/min for carbide hobs. Typically with a 100mm diameter hob the rotation speed will be 100rpm and so a twenty tooth workpiece will rotate at 5 rpm. Each revolution of the workpiece will correspond to 0.75mm feed so the hob will advance through the workpiece at about 4mm per minute. For car production roughing multiple start hobs can be used with coarse feeds of 3mm per revolution so that 100 rpm on the cutter, a two-start hob and a 20 tooth gear will give a feed rate of 30mm/minute.
The disadvantage of a coarse feed rate is that a clear marking is left on the workpiece, particularly in the root, showing a pattern at a spacing of the feed rate per revolution. This surface undulation is less marked on the flanks than in the root and is not important when there is a subsequent finishing operation such as shaving or grinding. When there are no further operations the feed per revolution must be restricted to keep the undulations below a limit which is usually dictated by lubrication conditions. The height of the undulations in the root of the gear is given by squaring the feed per revolution and dividing by four times the diameter of the hob; 1 mm feed and 100mm diameter gives 2.5 micron high undulations in the root. On the gear flank the undulation is roughly cos70 as large, i.e., about 0.85 micron.
Accuracy of hobbing is normally high for pitch and for helix, provided machines are maintained; involute is dependent solely on the accuracy of the hob profile. As the involute form is generated by as many cuts as there are gashes on the hob the involute is not exact, but if there are, say, 14 tangents generating a flank of 20 mm radius curvature about 4 mm high the divergence from a true involute is only about half a micron; hob manufacturing and mounting errors can be above 10 microns. Use of twostart hobs or oblique hobbing gives increased error levels since hob errors of pitching transfer to the cut gear.
broaching
Broaching is not used for helical gears but is useful for internal spur gears; the principal use of broaching in this context is for internal splines which cannot easily be made by any other method. As with all broaching the method is only economic for large quantities since setup costs are high.
The major application of broaching techniques to helical external gears is that used by Gleasons in their G-TRAC machine .this machine operates by increasing the effective radius of a hobbing cutter to infinity so that each tooth of the cutter is traveling in a straight line instead of on a radius. This allows the cutting action to extend over the whole facewidth of a gear instead of the typical 0.75 mm feed per revolution of hobbing. The resulting process gives a very high production rate , more suitable for U.S.A. production volumes than for the relatively low European volumes and so, despite a high initial cost ,is very competitive.
Broaching give high accuracy and good surface finish but like all cutting processes is limited to “soft” materials which must be subsequently casehardened or heat treated, giving distortion.
Shaving
A shaving cutting cutter looks like a gear which has extra clearance at the root and whose tooth flanks have been grooved to give cutting edges. It is run in mesh with the rough gear with crossed axes so that there is in theory point contact with a relative velocity along the teeth giving scraping action. The shaving cutter teeth are relatively flexible in bending and so will only operate effectively when they are in double contact between two gear teeth. The gear and cutter operate at high rotational speeds with traversing of the workface and about 100 mm micron of material is removed. Cycle times can be less than half a minute and the machines are not expensive but cutters are delicate and difficult to manufacture. It is easy to make adjustments of profile at the shaving stage and crowning can be applied. Shaving can be carried out near a shoulder by using a cutter which is plunged in to depth without axial movement; this method is fast but requires more complex cutter design.
grinding
Grinding is extremely important because it is the main way hardened gear are machined. When high accuracy is required it is not sufficient to pre-correct for heat treatment distortion and grinding is then necessary.
The simplest approach to grinding, often termed the Orcutt method. The wheel profile is dressed accurately to shape using single point diamonds which are controlled by templates cut to the exact shape required; 6:1 scaling with a pantograph is often used. The profile wheel is then reciprocated axially along the gear which rotates to allow for helix angle effects; when one tooth shape has been finished, involving typically 100 micron metal removal the gear is indexed to the next tooth space. This method is fairly show but gives high accuracy consistently. Setting up is lengthy because different dressing templates are needed if module, number of teeth, helix angle, or profile correction are changed.
The fastest grinding method uses the same principle as hobbing but replaces a gashed and relieved worm by a grinding wheel which is a rack in section. Since high surface speeds are needed the wheel diameter is increased so that wheels of 0.5 m diameter can run at over 2000 rpm to give the necessary 1000 m/min. only single start worms are cut on the wheel but gear rotation speeds are high,100 rpm typically, so it is difficult to design the drive system to give accuracy and rigidity. Accuracy of the process is reasonably high although there is a tendency for wheel and workpiece to deflect variably during grinding so the wheel form may require compensation for machine deflection effects. Generation of a worm shape on the grinding wheel is a slow process since a dressing diamond or roller must not only form the rack profile but has to move axially as the wheel rotates. Once the wheel has been trued, gears can be ground rapidly until redressing is required. This is the most popular method for high production rates with small gear and is usually called the Reishauer method.
Large gears are usually generated by the Maag method which is similar to planning in its approach but uses cup grinding wheels of large diameter to form the flanks of the theoretical mating rack. Gears of very large diameter cannot easily be moved so the gear is essentially stationary while the grinding wheel carriage reciprocates in the direction of the helix. The wheel is only in contact over a small part of the facewidth in helical gears so this is not important when only a few gears of this size are made in a year. As with form grinding, after grinding a pair of flanks the gear is indexed to the next pair.
A similar method used for medium size gears has stationary wheels, while the rough gear is traversed under the wheels. Corresponding rotational movement of the gear is controlled by steel bands unwrapping from a cylinder of pitch circle diameter so that the motion of gear relative to “rack” is correct.
Another method, the Nile approach, uses a wheel which is formed to give the “theoretical mating rack” instead of using two cup wheels as in the Maag method. This approach is best suited to medium precision work on smaller gears and is intermediate in speed between the Reishauer and Maag methods.
All grinding processes are slow and costly compared with cutting processed and so are only used when accuracy is essential. A rough rule of thumb is that grinding will increase gear cutting costs by a factor of 10 but the cost of the teeth is often only a small part of the total cost of a gearbox. The accuracies attainable are surprisingly not very dependent on size of gear ; whether a gear is 5 m or 50 m diameter the pitch involute and helix accuracies attainable are of the order of 5 microns or better and more dependent on the skill and patience of the operator and inspectors than on any other factors.
It is often assumed that grinding will remove all error generated at the roughing stage. Unfortunately, grinding machines are relatively flexible and so the grinding wheel has a tendency to follow previous errors. The errors will thus be reduced but not completely eliminated unless very many cuts are used; whenever a grinding process is giving in consistent results it is advisable to check the accuracies at the rough-cut stage. The only exception is the form grinding process which will not follow involute errors though it will still allow helix and pitch errors.
8
指 導(dǎo) 教 師 評(píng) 語(yǔ)
外文翻譯成績(jī):
指導(dǎo)教師簽字:
年 月 日
9
收藏