影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2017-2018版高中數(shù)學 第1章 導數(shù)及其應用章末復習課學案 蘇教版選修2-2

上傳人:彩*** 文檔編號:104612158 上傳時間:2022-06-10 格式:DOC 頁數(shù):13 大小:1.63MB
收藏 版權(quán)申訴 舉報 下載
2017-2018版高中數(shù)學 第1章 導數(shù)及其應用章末復習課學案 蘇教版選修2-2_第1頁
第1頁 / 共13頁
2017-2018版高中數(shù)學 第1章 導數(shù)及其應用章末復習課學案 蘇教版選修2-2_第2頁
第2頁 / 共13頁
2017-2018版高中數(shù)學 第1章 導數(shù)及其應用章末復習課學案 蘇教版選修2-2_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2017-2018版高中數(shù)學 第1章 導數(shù)及其應用章末復習課學案 蘇教版選修2-2》由會員分享,可在線閱讀,更多相關(guān)《2017-2018版高中數(shù)學 第1章 導數(shù)及其應用章末復習課學案 蘇教版選修2-2(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第1章 導數(shù)及其應用 知識點一 導數(shù)的概念 1.定義:函數(shù)y=f(x)在x=x0處的瞬時變化率 ,稱為函數(shù)y=f(x)在x=x0處的導數(shù). 2.幾何意義:函數(shù)y=f(x)在x=x0處的導數(shù)是函數(shù)圖象在點(x0,f(x0))處的切線的斜率,表示為f′(x0),其切線方程為 . 知識點二 基本初等函數(shù)的導數(shù)公式 1.c′=0. 2.(xα)′= . 3.(ax)′= (a>0). 4.(ex)′= . 5.(logax)′=()′=(a>0,且a≠1). 6.(ln x)′=. 7.(sin x)′= . 8.(cos x)′= . 知

2、識點三 導數(shù)的運算法則 1.[f(x)±g(x)]′= . 2.[f(x)·g(x)]′= . 3.[]′= (g(x)≠0). 知識點四 復合函數(shù)的求導法則 1.復合函數(shù)記法:y=f(g(x)). 2.中間變量代換:y=f(u),u=g(x). 3.逐層求導法則:y′x=y(tǒng)′u·u′x. 知識點五 函數(shù)的單調(diào)性、極值與導數(shù) 1.函數(shù)的單調(diào)性與導數(shù) 在某個區(qū)間(a,b)內(nèi),如果________,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果________,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減. 2.函數(shù)的極值與導數(shù) (1)極大值:在點x=a

3、附近,滿足f(a)≥f(x),當xa時,________,則點a叫做函數(shù)的極大值點,f(a)叫做函數(shù)的極大值; (2)極小值:在點x=a附近,滿足f(a)≤f(x),當xa時,________,則點a叫做函數(shù)的極小值點,f(a)叫做函數(shù)的極小值. 3.求函數(shù)f(x)在閉區(qū)間[a,b]上的最值的步驟 (1)求函數(shù)y=f(x)在(a,b)內(nèi)的極值; (2)將函數(shù)y=f(x)的______與______處的函數(shù)值f(a),f(b)比較,其中最大的一個就是________,最小的一個就是______. 知識點六 微積分基本定理

4、 如果f(x)是區(qū)間[a,b]上的連續(xù)函數(shù),并且F′(x)=f(x),那么?f(x)dx=________. 知識點七 定積分的性質(zhì) 1.?kf(x)dx= (k為常數(shù)). 2.?[f1(x)±f2(x)]dx= . 3.?f(x)dx= (其中a0),直線l是曲線y=f(x)的一條切線,當l的斜率最小時,直線l與直線10x+y=6平行. ①求a的值; ②求

5、f(x)在x=3處的切線方程.       反思與感悟 利用導數(shù)求切線方程時關(guān)鍵是找到切點,若切點未知需設出.常見的類型有兩種,一類是求“在某點處的切線方程”,則此點一定為切點,易求斜率進而寫出直線方程即可得;另一類是求“過某點的切線方程”,這種類型中的點不一定是切點,可先設切點為Q(x1,y1),由=f′(x1)和y1=f(x1)求出x1,y1的值,轉(zhuǎn)化為第一種類型. 跟蹤訓練1 直線y=kx+b與曲線y=x3+ax+1相切于點(2,3),則b=________. 類型二 函數(shù)的單調(diào)性、極值、最值問題 例2 設a為實數(shù),函數(shù)f(x)=ex-2x+2a,x∈R. (

6、1)求f(x)的單調(diào)區(qū)間與極值; (2)求證:當a>ln 2-1且x>0時,ex>x2-2ax+1.             反思與感悟 本題考查導數(shù)的運算,利用導數(shù)研究函數(shù)的單調(diào)性,求函數(shù)的極值和證明不等式,考查運算能力、分析問題、解決問題的能力. 跟蹤訓練2 已知函數(shù)f(x)=(4x2+4ax+a2),其中a<0. (1)當a=-4時,求f(x)的單調(diào)遞增區(qū)間; (2)若f(x)在區(qū)間[1,4]上的最小值為8,求a的值.             類型三 生活中的優(yōu)化問題 例3 某公司為獲得更大的收益,每年要投入一

7、定的資金用于廣告促銷.經(jīng)調(diào)查,每年投入廣告費t(百萬元),可增加銷售額約為-t2+5t(百萬元)(0≤t≤3). (1)若該公司將當年的廣告費控制在3百萬元之內(nèi),則應投入多少廣告費,才能使該公司獲得的收益最大? (2)現(xiàn)該公司準備共投入3百萬元,分別用于廣告促銷和技術(shù)改造.經(jīng)預測,每投入技術(shù)改造費x(百萬元),可增加的銷售額為-x3+x2+3x(百萬元).請設計一個資金分配方案,使該公司由此獲得的收益最大.           反思與感悟 解決優(yōu)化問題的步驟: (1)要分析問題中各個數(shù)量之間的關(guān)系,建立適當?shù)暮瘮?shù)模型,并確定函數(shù)的定義域. (2)要通過研

8、究相應函數(shù)的性質(zhì),如單調(diào)性、極值與最值,提出優(yōu)化方案,使問題得以解決,在這個過程中,導數(shù)是一個有力的工具. (3)驗證數(shù)學問題的解是否滿足實際意義. 跟蹤訓練3 某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率). (1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域; (2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時該蓄水池的體積最大.         類型四 

9、定積分與微積分基本定理 例4 (1)設f(x)=則?f(x)dx=________. (2)如圖,是由直線y=x-2,曲線y2=x所圍成的圖形,試求其面積S.             反思與感悟 由定積分求曲邊梯形面積的方法步驟: (1)畫出函數(shù)的圖象,明確平面圖形的形狀. (2)通過解方程組,求出曲線交點的坐標. (3)確定積分區(qū)間與被積函數(shù),轉(zhuǎn)化為定積分計算. (4)對于復雜的平面圖形,常常通過“割補法”來求各部分的面積之和. 跟蹤訓練4 求由拋物線y=x2-1,直線x=2,y=0所圍成的圖形的面積.        

10、     1.已知函數(shù)f(x)=ax2-2ln(2-x)(a∈R),設曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓C:x2+y2=相切,則a=________. 2.體積為16π的圓柱,它的半徑為________時,圓柱的表面積最?。? 3.設兩拋物線y=-x2+2x,y=x2所圍成的圖形為M,求M的面積. 4.已知函數(shù)f(x)=x-aln x(a∈R). (1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程; (2)求函數(shù)f(x)的極值.           1.利用導數(shù)的幾何意義可以求出曲線上任

11、意一點處的切線方程y-y0=f′(x0)(x-x0).明確“過點P(x0,y0)的曲線y=f(x)的切線方程”與“在點P(x0,y0)處的曲線y=f(x)的切線方程”的異同點. 2.借助導數(shù)研究函數(shù)的單調(diào)性,經(jīng)常同三角函數(shù),一元二次不等式結(jié)合,融分類討論、數(shù)形結(jié)合于一體. 3.利用導數(shù)求解優(yōu)化問題,注意自變量中的定義域,找出函數(shù)關(guān)系式,轉(zhuǎn)化為求最值問題. 4.不規(guī)則圖形的面積可用定積分求,關(guān)鍵是確定積分上、下限及被積函數(shù),積分的上、下限一般是兩曲線交點的橫坐標. 答案精析 問題導學 知識點一 2.y-f(x0)=f′(x0)(x-x0) 知識點二 2.αxα-1 3.ax

12、ln a 4.ex 6. 7.cos x 8.-sin x 知識點三 1.f′(x)±g′(x) 2.f′(x)g(x)+f(x)g′(x) 3. 知識點五 1.f′(x)>0 f′(x)<0 2.(1)f′(x)>0 f′(x)<0 (2)f′(x)<0 f′(x)>0 3.(2)極值 端點 最大值 最小值 知識點六 F(b)-F(a) 知識點七 1.k?f(x)dx 2.?f2(x)dx 3.?f(x)dx+?f(x)dx 題型探究 例1 (1)-1 解析 f′(1)=k+1=0,k=-1. (2)解?、賔′(x)=x2+2ax-9=(x+a)2-a2-

13、9, f′(x)min=-a2-9, 由題意知-a2-9=-10, ∴a=1或-1(舍去). 故a=1. ②由①得a=1. ∴f′(x)=x2+2x-9, 則k=f′(3)=6,f(3)=-10. ∴f(x)在x=3處的切線方程為y+10=6(x-3), 即6x-y-28=0. 跟蹤訓練1?。?5 解析 令f(x)=x3+ax+1, 由題意知f(2)=3,則a=-3. ∴f(x)=x3-3x+1. ∴f′(2)=3×22-3=9=k, 又點(2,3)在直線y=9x+b上, ∴b=3-9×2=-15. 例2 (1)解 由f(x)=ex-2x+2a,x∈R知f′(

14、x)=ex-2,x∈R. 令f′(x)=0,得x=ln 2. 當x變化時,f′(x),f(x)的變化情況如下表: x (-∞,ln 2) ln 2 (ln 2,+∞) f′(x) - 0 + f(x)  極小值  故f(x)的單調(diào)遞減區(qū)間是(-∞,ln 2),單調(diào)遞增區(qū)間是(ln 2,+∞),f(x)在x=ln 2處取得極小值,極小值為f(ln 2)=eln 2-2ln 2+2a=2(1-ln 2+a). (2)證明 設g(x)=ex-x2+2ax-1,x∈R, 于是g′(x)=ex-2x+2a,x∈R. 由(1)知當a>ln 2-1時,g′(x)取

15、最小值為g′(ln 2)=2(1-ln 2+a)>0. 于是對任意x∈R,都有g(shù)′(x)>0, 所以g(x)在R內(nèi)單調(diào)遞增. 于是當a>ln 2-1時,對任意x∈(0,+∞),都有g(shù)(x)>g(0). 而g(0)=0,從而對任意x∈(0,+∞),都有g(shù)(x)>0. 即ex-x2+2ax-1>0, 故ex>x2-2ax+1. 跟蹤訓練2 解 (1)當a=-4時,由f′(x)==0, 得x=或x=2. 由f′(x)>0,得x∈(0,)或x∈(2,+∞), 故函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,)和(2,+∞). (2)因為f′(x)=,a<0, 由f′(x)=0得x=-或x=

16、-. 當x∈(0,-)時,f(x)單調(diào)遞增; 當x∈(-,-)時,f(x)單調(diào)遞減; 當x∈(-,+∞)時,f(x)單調(diào)遞增, 易知f(x)=(2x+a)2≥0, 且f(-)=0. ①當-≤1,即-2≤a<0時, f(x)在[1,4]上的最小值為f(1), 由f(1)=4+4a+a2=8, 得a=±2-2,均不符合題意. ②當1<-≤4,即-8≤a<-2時,f(x)在[1,4]上的最小值為f(-)=0,不符合題意. ③當->4,即a<-8時,f(x)在[1,4]上的最小值可能在x=1或x=4上取得,而f(1)≠8, 由f(4)=2(64+16a+a2)=8,得a=-10

17、或a=-6(舍去), 當a=-10時,f(x)在(1,4)上單調(diào)遞減, f(x)在[1,4]上的最小值為f(4)=8,符合題意. 綜上有a=-10. 例3 解 (1)設投入t(百萬元)的廣告費后增加的收益為f(t)(百萬元), 則有f(t)=(-t2+5t)-t=-t2+4t=-(t-2)2+4(0≤t≤3), 所以當t=2時,f(t)取得最大值4, 即投入2百萬元的廣告費時,該公司獲得的收益最大. (2)設用于技術(shù)改造的資金為x(百萬元),則用于廣告促銷的資金為(3-x)(百萬元). 由此獲得的收益是g(x)(百萬元), 則g(x)=(-x3+x2+3x)+[-(3-x)

18、2+5(3-x)]-3=-x3+4x+3(0≤x≤3), 所以g′(x)=-x2+4. 令g′(x)=0,解得x=-2(舍去)或x=2. 又當0≤x<2時,g′(x)>0;當2

19、r2=12 000π,所以h=(300-4r2), 從而V(r)=πr2h=(300r-4r3). 因為r>0,又由h>0可得r<5, 故函數(shù)V(r)的定義域為(0,5). (2)因為V(r)=(300r-4r3), 故V′(r)=(300-12r2), 令V′(r)=0,解得r1=5,r2=-5(因為r2=-5不在定義域內(nèi),舍去). 當r∈(0,5)時,V′(r)>0,故V(r)在(0,5)上為增函數(shù); 當r∈(5,5)時,V′(r)<0,故V(r)在(5,5)上為減函數(shù). 由此可知,V(r)在r=5處取得最大值,此時h=8. 即當r=5,h=8時,該蓄水池的體積最大.

20、 例4 (1) 解析 ?f(x)dx=?x3dx+?(3-2x)dx=+(3x-x2)|=. (2)解 方法一 由得x=1或x=4, 故A(1,-1),B(4,2),如圖所示, S=2?dx+?(-x+2)dx =2×x|+(x-x2+2x)| =2×+[(×4-×42+2×4)-(-+2)] =. 方法二 由得y1=-1,y2=2, ∴S=?(y+2-y2)dy=(y2+2y-y3)=. 跟蹤訓練4  解 作出草圖如圖所示,所求圖形的面積為圖中陰影部分的面積. 由x2-1=0得拋物線與x軸的交點坐標是(-1,0)和(1,0), 因此所求圖形的面積為 S=?

21、|x2-1|dx+?(x2-1)dx =?(1-x2)dx+?(x2-1)dx =+ =(1-)-(-1+)+(×23-2)-(-1)=. 達標檢測 1. 2.2 3.解 函數(shù)y=-x2+2x,y=x2在同一平面直角坐標系中的圖象如圖所示. 由圖可知,圖形M的面積 S=?(-x2+2x-x2)dx =?(-2x2+2x)dx ==. 4.解 函數(shù)f(x)的定義域為(0,+∞), f′(x)=1-. (1)當a=2時,f(x)=x-2ln x,f′(x)=1-(x>0), 因而f(1)=1,f′(1)=-1, 所以曲線y=f(x)在點A(1,f(1))處的切線方程為 y-1=-(x-1),即x+y-2=0. (2)由f′(x)=1-=,x>0知: ①當a≤0時,f′(x)>0,函數(shù)f(x)為(0,+∞)上的增函數(shù),函數(shù)f(x)無極值; ②當a>0時,由f′(x)=0,解得x=a. 又當x∈(0,a)時,f′(x)<0; 當x∈(a,+∞)時,f′(x)>0, 從而函數(shù)f(x)在x=a處取得極小值,且極小值為 f(a)=a-aln a,無極大值. 綜上,當a≤0時,函數(shù)f(x)無極值; 當a>0時,函數(shù)f(x)在x=a處取得極小值a-aln a,無極大值. 13

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!