影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 函數(shù)與導(dǎo)數(shù) 第一講 函數(shù)圖象與性質(zhì)學(xué)案 理

上傳人:彩*** 文檔編號(hào):104740603 上傳時(shí)間:2022-06-11 格式:DOC 頁(yè)數(shù):19 大?。?99.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 函數(shù)與導(dǎo)數(shù) 第一講 函數(shù)圖象與性質(zhì)學(xué)案 理_第1頁(yè)
第1頁(yè) / 共19頁(yè)
2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 函數(shù)與導(dǎo)數(shù) 第一講 函數(shù)圖象與性質(zhì)學(xué)案 理_第2頁(yè)
第2頁(yè) / 共19頁(yè)
2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 函數(shù)與導(dǎo)數(shù) 第一講 函數(shù)圖象與性質(zhì)學(xué)案 理_第3頁(yè)
第3頁(yè) / 共19頁(yè)

下載文檔到電腦,查找使用更方便

36 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 函數(shù)與導(dǎo)數(shù) 第一講 函數(shù)圖象與性質(zhì)學(xué)案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 函數(shù)與導(dǎo)數(shù) 第一講 函數(shù)圖象與性質(zhì)學(xué)案 理(19頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 第一講 函數(shù)圖象與性質(zhì) 考點(diǎn)一 函數(shù)及其表示 1.函數(shù)的三要素 定義域、值域和對(duì)應(yīng)關(guān)系是確定函數(shù)的三要素,是一個(gè)整體,研究函數(shù)問(wèn)題務(wù)必遵循“定義域優(yōu)先”的原則. 2.分段函數(shù) 若函數(shù)在其定義域內(nèi),對(duì)于自變量的不同取值區(qū)間,有著不同的對(duì)應(yīng)法則,這樣的函數(shù)通常叫做分段函數(shù).分段函數(shù)雖然由幾部分組成,但它表示的是一個(gè)函數(shù). [對(duì)點(diǎn)訓(xùn)練] 1.(2018·廣東深圳一模)函數(shù)y=的定義域?yàn)?  ) A.(-2,1) B.[-2,1] C.(0,1) D.(0,1] [解析] 由題意得解得0

2、(x)=lg(1-x),則函數(shù)f[f(x)]的定義域?yàn)?  ) A.(-9,+∞) B.(-9,1) C.[-9,+∞) D.[-9,1) [解析] f[f(x)]=f[lg(1-x)]=lg[1-lg(1-x)], 則?-9-3,故-3

3、得-3

4、數(shù):根據(jù)f[g(x)]中g(shù)(x)的范圍與f(x)中x的范圍相同求解. ③實(shí)際問(wèn)題或幾何問(wèn)題:除要考慮解析式有意義外,還應(yīng)使實(shí)際問(wèn)題有意義. (2)函數(shù)值域問(wèn)題的4種常用方法 公式法、分離常數(shù)法、圖象法、換元法. 考點(diǎn)二 函數(shù)的圖象及其應(yīng)用 1.作圖 常用描點(diǎn)法和圖象變換法,圖象變換法常用的有平移變換、伸縮變換和對(duì)稱變換. 2.識(shí)圖 從圖象與軸的交點(diǎn)及左、右、上、下分布范圍、變化趨勢(shì)、對(duì)稱性等方面找準(zhǔn)解析式與圖象的對(duì)應(yīng)關(guān)系. 3.用圖 在研究函數(shù)性質(zhì)特別是單調(diào)性、最值、零點(diǎn)時(shí),要注意用好其與圖象的關(guān)系,結(jié)合圖象研究.但是,在利用圖象求交點(diǎn)個(gè)數(shù)或解的個(gè)數(shù)時(shí),作圖要十分準(zhǔn)確,否則

5、容易出錯(cuò). 角度1:以具體函數(shù)的解析式選擇圖象或知圖象選解析式 【例1】 (2018·全國(guó)卷Ⅱ)函數(shù)f(x)=的圖象大致為(  ) [解析] 因?yàn)閒(x)的定義域關(guān)于原點(diǎn)對(duì)稱且f(-x)=-f(x),所以f(x)為奇函數(shù),排除A選項(xiàng);由f(2)=>1,排除C、D選項(xiàng).故選B. [答案] B 角度2:利用函數(shù)的圖象研究函數(shù)的性質(zhì)(特別是單調(diào)性、最值、零點(diǎn))、方程解的問(wèn)題及解不等式、比較大小等 【例2】 設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0使得f(x0)<0,則實(shí)數(shù)a的取值范圍是(  ) A. B. C. D. [解析]

6、  設(shè)g(x)=ex(2x-1),h(x)=ax-a,由題知存在唯一的整數(shù)x0,使得g(x0)

7、表達(dá)的函數(shù)的性質(zhì).②圖象形象地顯示了函數(shù)的性質(zhì),因此,函數(shù)性質(zhì)的確定與應(yīng)用及一些方程、不等式的求解常與圖象數(shù)形結(jié)合研究. [對(duì)點(diǎn)訓(xùn)練] 1.[角度1](2018·貴州七校聯(lián)考)已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可以是(  ) A.f(x)= B.f(x)= C.f(x)=-1 D.f(x)=x- [解析] 由函數(shù)圖象可知,函數(shù)f(x)為奇函數(shù),應(yīng)排除B、C.若函數(shù)為f(x)=x-,則x→+∞時(shí),f(x)→+∞,排除D,故選A. [答案] A 2.[角度2](2018·福建漳州八校聯(lián)考)已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有三個(gè)零點(diǎn),則實(shí)數(shù)m的

8、取值范圍是________. [解析]  令g(x)=f(x)-m=0,得f(x)=m,則函數(shù)g(x)=f(x)-m有三個(gè)零點(diǎn)等價(jià)于函數(shù)f(x)與y=m的圖象有三個(gè)不同的交點(diǎn),作出函數(shù)f(x)的圖象如圖: 當(dāng)x≤0時(shí),f(x)=x2+x=2-≥-,若函數(shù)f(x)與y=m的圖象有三個(gè)不同的交點(diǎn),則-

9、稱. (2)確定函數(shù)的奇偶性,務(wù)必先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱. (3)對(duì)于偶函數(shù)而言,有f(-x)=f(x)=f(|x|). 3.函數(shù)的周期性 對(duì)f(x)定義域內(nèi)任一自變量的值x: (1)若f(x+a)=-f(x),則T=2a; (2)若f(x+a)=,則T=2a; (3)若f(x+a)=-,則T=2A.(a>0) 4.函數(shù)的對(duì)稱性 (1)若函數(shù)y=f(x)滿足f(a+x)=f(a-x),即f(x)=f(2a-x),則f(x)的圖象關(guān)于直線x=a對(duì)稱. (2)若函數(shù)y=f(x)滿足f(a+x)=-f(a-x),即f(x)=-f(2a-x),則f(x)的圖象關(guān)于點(diǎn)(a

10、,0)對(duì)稱. (3)若函數(shù)y=f(x)滿足f(a+x)=f(b-x),則函數(shù)f(x)的圖象關(guān)于直線x=對(duì)稱. 角度1:確認(rèn)函數(shù)的單調(diào)性、奇偶性、周期性、對(duì)稱性及最值 【例1】 (2017·北京卷)已知函數(shù)f(x)=3x-x,則f(x)(  ) A.是奇函數(shù),且在R上是增函數(shù) B.是偶函數(shù),且在R上是增函數(shù) C.是奇函數(shù),且在R上是減函數(shù) D.是偶函數(shù),且在R上是減函數(shù) [解析] 易知函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱. ∵f(-x)=3-x--x=x-3x=-f(x), ∴f(x)為奇函數(shù). 又∵y=3x在R上是增函數(shù),y=-x在R上是增函數(shù), ∴f(x)=3x-x在R上

11、是增函數(shù).故選A. [答案] A [快速審題] 看到奇偶性的判斷,想到用-x代x;看到單調(diào)性的判斷,想到函數(shù)的構(gòu)成. 角度2:綜合應(yīng)用函數(shù)的性質(zhì)求值(取值范圍)、比較大小等,常與不等式相結(jié)合 [解析] ∵f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0]上單調(diào)遞增,∴f(x)在區(qū)間[0,+∞)上單調(diào)遞減.根據(jù)函數(shù)的對(duì)稱性,可得f(-)=f(), [答案] B  函數(shù)3個(gè)性質(zhì)的應(yīng)用要領(lǐng) (1)奇偶性:具有奇偶性的函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上其圖象、函數(shù)值、解析式和單調(diào)性聯(lián)系密切,研究問(wèn)題時(shí)可轉(zhuǎn)化到只研究部分(一半)區(qū)間上,這是簡(jiǎn)化問(wèn)題的一種途徑.尤其注意偶函

12、數(shù)f(x)的性質(zhì):f(|x|)=f(x). (2)單調(diào)性:可以比較大小,求函數(shù)最值,解不等式,證明方程根的唯一性. (3)周期性:利用周期性可以轉(zhuǎn)化函數(shù)的解析式、圖象和性質(zhì),把不在已知區(qū)間上的問(wèn)題,轉(zhuǎn)化到已知區(qū)間上求解. [對(duì)點(diǎn)訓(xùn)練] 1.[角度1](2018·湖北荊州一模)下列函數(shù)是奇函數(shù)且在定義域內(nèi)是增函數(shù)的是(  ) A.y=ex B.y=tanx C.y=x3-x D.y=ln [解析] 函數(shù)y=ex不是奇函數(shù),不滿足題意;函數(shù)y=tanx是奇函數(shù),但在整個(gè)定義域內(nèi)不是增函數(shù),不滿足題意;函數(shù)y=x3-x是奇函數(shù),當(dāng)x∈時(shí),y′=3x2-1<0,為減函數(shù),不滿

13、足題意;函數(shù)y=ln是奇函數(shù),在定義域(-2,2)內(nèi),函數(shù)t==-1-為增函數(shù),函數(shù)y=lnt也為增函數(shù),故函數(shù)y=ln在定義域內(nèi)為增函數(shù),滿足題意,故選D. [答案] D 2.[角度2]已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則(  ) A.f(-25)

14、(-25)=f(-1),f(80)=f(0),f(11)=f(3). 由f(x)是定義在R上的奇函數(shù),且滿足f(x-4)=-f(x), 得f(11)=f(3)=-f(-1)=f(1). 因?yàn)閒(x)在區(qū)間[0,2]上是增函數(shù),f(x)在R上是奇函數(shù), 所以f(x)在區(qū)間[-2,2]上是增函數(shù), 所以f(-1)

15、 B.0 C.2 D.50 [解析] ∵f(x)是定義域?yàn)?-∞,+∞)的奇函數(shù), ∴f(0)=0, f(-x)=-f(x),① 又∵f(1-x)=f(1+x),∴f(-x)=f(2+x),② 由①②得f(2+x)=-f(x),③ 用2+x代替x得f(4+x)=-f(2+x).④ 由③④得f(x)=f(x+4), ∴f(x)的最小正周期為4. 由于f(1-x)=f(1+x),f(1)=2, 故令x=1,得f(0)=f(2)=0, 令x=2,得f(3)=f(-1)=-f(1)=-2, 令x=3,得f(4)=f(-2)=-f(2)=0, 故f(1)+f(2)

16、+f(3)+f(4)=2+0-2+0=0, 所以f(1)+f(2)+f(3)+…+f(50)=12×0+f(1)+f(2)=0+2+0=2.故選C. [答案] C 2.(2018·全國(guó)卷Ⅲ)函數(shù)y=-x4+x2+2的圖象大致為(  ) [解析] ∵f(x)=-x4+x2+2,∴f′(x)=-4x3+2x,令f′(x)>0,解得x<-或0,此時(shí),f(x)遞減.由此可得f(x)的大致圖象.故選D. [答案] D 3.(2017·天津卷)已知奇函數(shù)f(x)在R上是增函數(shù),g(x)=xf(x).若a=g(-log25.1

17、),b=g(20.8),c=g(3),則a,b,c的大小關(guān)系為(  ) A.a(chǎn)0時(shí),f(x)>f(0)=0,當(dāng)x1>x2>0時(shí),f(x1)>f(x2)>0,∴x1f(x1)>x2f(x2),∴g(x)在(0,+∞)上單調(diào)遞增,且g(x)=xf(x)是偶函數(shù),∴a=g(-log25.1)=g(log25.1).2

18、.(2017·全國(guó)卷Ⅲ)設(shè)函數(shù)f(x)=則滿足f(x)+f>1的x的取值范圍是________. [解析] 當(dāng)x>時(shí),f(x)+f=2x+2x->2x>>1; 當(dāng)02x>1;當(dāng)x≤0時(shí),f(x)+f=x+1++1=2x+,∴f(x)+f>1?2x+>1?x>-,即-

19、-1)=,f=cos=, ∴f[f(15)]=f=. [答案]  1.高考對(duì)此部分內(nèi)容的命題多集中于函數(shù)的概念、函數(shù)的性質(zhì)及分段函數(shù)等方面,多以選擇、填空題形式考查,一般出現(xiàn)在第5~10或第13~15題的位置上,難度一般.主要考查函數(shù)的定義域,分段函數(shù)求值或分段函數(shù)中參數(shù)的求解及函數(shù)圖象的判斷. 2.此部分內(nèi)容有時(shí)出現(xiàn)在選擇、填空題壓軸題的位置,多與導(dǎo)數(shù)、不等式、創(chuàng)新性問(wèn)題結(jié)合命題,難度較大. 熱點(diǎn)課題4 動(dòng)點(diǎn)變化中函數(shù)圖象辨析 [感悟體驗(yàn)] 1.(2018·長(zhǎng)沙模擬)如圖,圓O的半徑為1,A是圓上的定點(diǎn),P是圓上的動(dòng)點(diǎn),角x的始邊為射線OA,終邊為射線

20、OP,過(guò)點(diǎn)P作直線OA的垂線,垂足為M.將點(diǎn)M到直線OP的距離表示成x的函數(shù)f(x),則y=f(x)在[0,π]的圖象大致為(  ) [解析] 由題意知,f(x)=|cosx|·sinx,當(dāng)x∈時(shí),f(x)=cosx·sinx=sin2x;當(dāng)x∈時(shí),f(x)=-cosx·sinx=-sin2x,故選B. [答案] B 2.(2018·南昌二模)如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E,F(xiàn)分別是棱A1B1,CD的中點(diǎn),點(diǎn)M是EF上的動(dòng)點(diǎn)(不與E,F(xiàn)重合),F(xiàn)M=x,過(guò)點(diǎn)M、直線AB的平面將正方體分成上下兩部分,記下面那部分的體積為V(x),則函數(shù)V(x)的大致圖象是

21、(  ) [解析] 當(dāng)x∈時(shí),V(x)增長(zhǎng)的速度越來(lái)越快,即變化率越來(lái)越大;當(dāng)x∈時(shí),V(x)增長(zhǎng)的速度越來(lái)越慢,即變化率越來(lái)越小,故選C. [答案] C 專題跟蹤訓(xùn)練(十) 一、選擇題 1.(2018·河南濮陽(yáng)檢測(cè))函數(shù)f(x)=log2(1-2x)+的定義域?yàn)?  ) A. B. C.(-1,0)∪ D.(-∞,-1)∪ [解析] 要使函數(shù)有意義,需滿足解得x<且x≠-1,故函數(shù)的定義域?yàn)?-∞,-1)∪. [答案] D 2.(2018·山東濰坊質(zhì)檢)下列函數(shù)中,既是偶函數(shù),又在(0,1)上單調(diào)遞增的是(  ) A.y=|log3x| B.y=

22、x3 C.y=e|x| D.y=cos|x| [解析] A中函數(shù)是非奇非偶函數(shù),B中函數(shù)是奇函數(shù),D中函數(shù)在(0,1)上單調(diào)遞減,均不符合要求,只有C正確. [答案] C 3.(2018·湖北襄陽(yáng)三模)已知函數(shù)f(x)=則f(2)=(  ) A. B.- C.-3 D.3 [解析] 由題意,知f(2)=f(1)+1=f(0)+2=cos0+2=3,故選D. [答案] D 4.(2018·太原階段測(cè)評(píng))函數(shù)y=x+1的圖象關(guān)于直線y=x對(duì)稱的圖象大致是(  ) [解析] 因?yàn)閥=x+1的圖象過(guò)點(diǎn)(0,2),且在R上單調(diào)遞減,所以該函數(shù)關(guān)于直線y=x對(duì)稱的圖

23、象恒過(guò)點(diǎn)(2,0),且在定義域內(nèi)單調(diào)遞減,故選A. [答案] A 5.(2018·石家莊高三檢測(cè))若函數(shù)y=f(2x+1)是偶函數(shù),則函數(shù)y=f(x)的圖象的對(duì)稱軸方程是(  ) A.x=1 B.x=-1 C.x=2 D.x=-2 [解析] ∵f(2x+1)是偶函數(shù),∴f(2x+1)=f(-2x+1)?f(x)=f(2-x),∴f(x)圖象的對(duì)稱軸為直線x=1,故選A. [答案] A 6.(2018·山東濟(jì)寧二模)已知函數(shù)y=f(x)是R上的偶函數(shù),對(duì)任意x1,x2∈(0,+∞),都有(x1-x2)·[f(x1)-f(x2)]<0.設(shè)a=ln,b=(lnπ)2,c=ln,

24、則(  ) A.f(a)>f(b)>f(c) B.f(b)>f(a)>f(c) C.f(c)>f(a)>f(b) D.f(c)>f(b)>f(a) [解析] 由題意易知f(x)在(0,+∞)上是減函數(shù),又 ∵|a|=lnπ>1,b=(lnπ)2>|a|,0f(|a|)>f(b).又由題意知f(a)=f(|a|),∴f(c)>f(a)>f(b).故選C. [答案] C 7.(2018·山西四校二次聯(lián)考)“a≤0”是“函數(shù)f(x)=|(ax-1)x|在(0,+∞)內(nèi)單調(diào)遞增”的(  ) A.充分不必要條件 B.必要不充分條件 C.充分必要條件

25、 D.既不充分也不必要條件 [解析] 當(dāng)a=0時(shí),f(x)=|x|在(0,+∞)上單調(diào)遞增;當(dāng)a<0時(shí),由f(x)=|(ax-1)x|=0得x=0或x=<0,結(jié)合圖象知f(x)在(0,+∞)上單調(diào)遞增,所以充分性成立,反之必要性也成立.綜上所述,“a≤0”是“f(x)=|(ax-1)x|在(0,+∞)上單調(diào)遞增”的充要條件,故選C. [答案] C 8.(2018·安徽淮北一模)函數(shù)f(x)=+ln|x|的圖象大致為(  ) [解析] 當(dāng)x<0時(shí),函數(shù)f(x)=+ln(-x),易知函數(shù)f(x)=+ln(-x)在(-∞,0)上遞減,排除C,D;當(dāng)x>0時(shí),函數(shù)f(x)=+lnx,f

26、(2)=+ln2≠2,故排除A,選B. [答案] B 9.(2018·山東濟(jì)寧一模)已知函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),且f(x)的圖象關(guān)于x=1對(duì)稱,當(dāng)x∈[0,1]時(shí),f(x)=2x-1.則f(2017)+f(2018)的值為(  ) A.-2 B.-1 C.0 D.1 [解析] ∵函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),∴f(-x)=-f(x),由f(x)的圖象關(guān)于x=1對(duì)稱,得f(1+x)=f(1-x),∴f(x)=f(2-x)=-f(-x),∴f(4-x)=-f(2-x)=f(-x),∴f(x)的周期T=4.∵當(dāng)x∈[0,1]時(shí),f(x)=2x-1.∴f

27、(2017)+f(2018)=f(1)+f(2)=f(1)+f(0)=2-1+1-1=1.故選D. [答案] D 10.如圖,已知l1⊥l2,圓心在l1上、半徑為1 m的圓O在t=0時(shí)與l2相切于點(diǎn)A,圓O沿l1以1 m/s的速度勻速向上移動(dòng),圓被直線l2所截上方圓弧長(zhǎng)記為x,令y=cosx,則y與時(shí)間t(0≤t≤1,單位:s)的函數(shù)y=f(t)的圖象大致為(  ) [解析]  如圖,設(shè)∠MON=α,由弧長(zhǎng)公式知x=α. 在Rt△AOM中,|AO|=1-t,cos==1-t, ∴y=cosx=2cos2-1=2(1-t)2-1.又0≤t≤1,故選B. [答案] B

28、11.(2018·安徽池州模擬)已知函數(shù)的定義域?yàn)镽,且滿足下列三個(gè)條件: ①對(duì)任意的x1,x2∈[4,8],當(dāng)x10; ②f(x+4)=-f(x); ③y=f(x+4)是偶函數(shù); 若a=f(6),b=f(11),c=f(2017),則a,b,c的大小關(guān)系正確的是(  ) A.a(chǎn)

29、(2017)=f(1)=f(7). ∵對(duì)任意的x1,x2∈[4,8],當(dāng)x10,∴函數(shù)f(x)在[4,8]上單調(diào)遞增,∴b

30、y=與y=f(x)圖象的交點(diǎn)(x1,y1),(x2,y2),…,(xm,ym)成對(duì)出現(xiàn),且每一對(duì)均關(guān)于點(diǎn)(0,1)對(duì)稱,所以i=0,i=2×=m,所以(xi+yi)=m. [答案] B 二、填空題 13.(2018·石家莊質(zhì)檢)函數(shù)的定義域?yàn)開_______. [解析] 由題意得解得

31、 則a+2=-(a+2),即a+2=0,則a=-2. 解法二:由題意知f(1)=-f(-1),即3(a+1)=a-1,得a=-2, 將a=-2代入f(x)的解析式,得f(x)=,經(jīng)檢驗(yàn),對(duì)任意x∈(-∞,0)∪(0,+∞),都滿足f(-x)=-f(x),故a=-2. [答案]?。? 15.(2018·河北石家莊一模)已知奇函數(shù)f(x)在x>0時(shí)單調(diào)遞增,且f(1)=0,若f(x-1)>0,則x的取值范圍為________. [解析] ∵奇函數(shù)f(x)在(0,+∞)上單調(diào)遞增,且f(1)=0,∴函數(shù)f(x)在(-∞,0)上單調(diào)遞增,且f(-1)=0,則-11時(shí),f(x)>0;x<-1或00即-11,解得02. [答案] (0,1)∪(2,+∞) 16.(2018·河南許昌二模)已知函數(shù)f(x)=的最大值為M,最小值為m,則M+m等于________. [解析] f(x)==2+, 設(shè)g(x)=,則g(-x)=-g(x)(x∈R), ∴g(x)為奇函數(shù),∴g(x)max+g(x)min=0. ∵M(jìn)=f(x)max=2+g(x)max, m=f(x)min=2+g(x)min, ∴M+m=2+g(x)max+2+g(x)min=4. [答案] 4 19

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!