2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第8節(jié) 函數(shù)與方程教學(xué)案 理(含解析)新人教A版
《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第8節(jié) 函數(shù)與方程教學(xué)案 理(含解析)新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第8節(jié) 函數(shù)與方程教學(xué)案 理(含解析)新人教A版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第八節(jié) 函數(shù)與方程 [考綱傳真] 結(jié)合二次函數(shù)的圖象,了解函數(shù)的零點(diǎn)與方程根的聯(lián)系,判斷一元二次方程根的存在性與根的個(gè)數(shù). 1.函數(shù)的零點(diǎn) (1)定義:對(duì)于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實(shí)數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點(diǎn). (2)函數(shù)零點(diǎn)與方程根的關(guān)系:方程f(x)=0有實(shí)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn). (3)零點(diǎn)存在性定理:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在x0∈(a,b),使得f(x0)=0. 2.二
2、次函數(shù)y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系 Δ=b2-4ac Δ>0 Δ=0 Δ<0 二次函數(shù) y=ax2+bx+c (a>0)的圖象 與x軸的交點(diǎn) (x1,0),(x2,0) (x1,0) 無(wú)交點(diǎn) 零點(diǎn)個(gè)數(shù) 2 1 0 [常用結(jié)論] 1.f(a)·f(b)<0是連續(xù)函數(shù)y=f(x)在閉區(qū)間[a,b]上有零點(diǎn)的充分不必要條件. 2.若函數(shù)f(x)在[a,b]上是單調(diào)函數(shù),且f(x)的圖象連續(xù)不斷,則f(a)·f(b)<0?函數(shù)f(x)在區(qū)間[a,b]上只有一個(gè)零點(diǎn). [基礎(chǔ)自測(cè)] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√
3、”,錯(cuò)誤的打“×”) (1)函數(shù)的零點(diǎn)就是函數(shù)的圖象與x軸的交點(diǎn).( ) (2)函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn)(函數(shù)圖象連續(xù)不斷),則f(a)·f(b)<0.( ) (3)若函數(shù)f(x)在(a,b)上單調(diào)且f(a)·f(b)<0,則函數(shù)f(x)在[a,b]上有且只有一個(gè)零點(diǎn).( ) (4)二次函數(shù)y=ax2+bx+c在b2-4ac<0時(shí)沒(méi)有零點(diǎn).( ) [答案] (1)× (2)× (3)× (4)√ 2.(教材改編)函數(shù)f(x)=ln x+2x-6的零點(diǎn)所在的區(qū)間是( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) C [由題
4、意得f(1)=ln 1+2-6=-4<0,f(2)=ln 2+4-6=ln 2-2<0, f(3)=ln 3+6-6=ln 3>0, f(4)=ln 4+8-6=ln 4+2>0, ∴f(x)的零點(diǎn)所在的區(qū)間為(2,3).] 3.(教材改編)已知函數(shù)y=f(x)的圖象是連續(xù)不斷的曲線,且有如下的對(duì)應(yīng)值表: x 1 2 3 4 5 6 y 124.4 33 -74 24.5 -36.7 -123.6 則函數(shù)y=f(x)在區(qū)間[1,6]上的零點(diǎn)至少有( ) A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè) B [∵f(2)·f(3)<0,f(3)·f(4
5、)<0,f(4)·f(5)<0, 故函數(shù)f(x)在區(qū)間[1,6]內(nèi)至少有3個(gè)零點(diǎn).] 4.函數(shù)f(x)=x-x的零點(diǎn)有________個(gè). 1 [如圖所示,函數(shù)f(x)=x-x的零點(diǎn)有1個(gè).] 5.函數(shù)f(x)=ax+1-2a在區(qū)間(-1,1)上存在一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是________. [∵函數(shù)f(x)的圖象為直線, 由題意可得f(-1)·f(1)<0, ∴(-3a+1)·(1-a)<0,解得<a<1, ∴實(shí)數(shù)a的取值范圍是.] 判斷函數(shù)零點(diǎn)所在的區(qū)間 1.函數(shù)f(x)=ln x-的零點(diǎn)所在的區(qū)間為( ) A.(0,1) B.(1,2)
6、C.(2,3) D.(3,4) B [由題意知函數(shù)f(x)是增函數(shù),因?yàn)閒(1)<0,f(2)=ln 2-=ln 2-ln >0,所以函數(shù)f(x)的零點(diǎn)所在的區(qū)間是(1,2).故選B.] 2.若a<b<c,則函數(shù)f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的兩個(gè)零點(diǎn)分別位于區(qū)間( ) A.(a,b)和(b,c)內(nèi) B.(-∞,a)和(a,b)內(nèi) C.(b,c)和(c,+∞)內(nèi) D.(-∞,a)和(c,+∞)內(nèi) A [∵a<b<c,∴f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0, 由
7、函數(shù)零點(diǎn)存在性判定定理可知:在區(qū)間(a,b)(b,c)內(nèi)分別存在一個(gè)零點(diǎn); 又函數(shù)f(x)是二次函數(shù),最多有兩個(gè)零點(diǎn), 因此函數(shù)f(x)的兩個(gè)零點(diǎn)分別位于區(qū)間(a,b),(b,c)內(nèi),故選A.] 3.已知函數(shù)f(x)=ln x+2x-6的零點(diǎn)在(k∈Z)內(nèi),那么k=________. 5 [∵f′(x)=+2>0,x∈(0,+∞),∴f(x)在x∈(0,+∞)上單調(diào)遞增,且f=ln -1<0,f(3)=ln 3>0,∴f(x)的零點(diǎn)在內(nèi),則整數(shù)k=5.] [規(guī)律方法] 判斷函數(shù)零點(diǎn)所在區(qū)間的方法 (1)解方程,當(dāng)對(duì)應(yīng)方程易解時(shí),可通過(guò)解方程,看方程是否有根落在給定區(qū)間上來(lái)判斷.
8、(2)利用零點(diǎn)存在性定理進(jìn)行判斷. (3)數(shù)形結(jié)合畫出函數(shù)圖象,通過(guò)觀察圖象與x軸在給定區(qū)間內(nèi)是否有交點(diǎn)來(lái)判斷. 判斷函數(shù)零點(diǎn)的個(gè)數(shù) 【例1】 (1)函數(shù)f(x)=的零點(diǎn)個(gè)數(shù)為( ) A.0 B.1 C.2 D.3 (2)設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=ex+x-3,則f(x)的零點(diǎn)個(gè)數(shù)為( ) A.1 B.2 C.3 D.4 (1)D (2)C [依題意,在考慮x>0時(shí)可以畫出函數(shù)y=ln x與y=x2-2x的圖象(如圖),可知兩個(gè)函數(shù)的圖象有兩個(gè)交點(diǎn),當(dāng)x≤0時(shí),函數(shù)f(x)=2x+1與x軸只有一個(gè)交點(diǎn),綜上,函數(shù)
9、f(x)有3個(gè)零點(diǎn).故選D. (2)因?yàn)楹瘮?shù)f(x)是定義域?yàn)镽的奇函數(shù),所以f(0)=0,即x=0是函數(shù)f(x)的1個(gè)零點(diǎn). 當(dāng)x>0時(shí),令f(x)=ex+x-3=0,則ex=-x+3,分別畫出函數(shù)y=ex和y=-x+3的圖象,如圖所示,兩函數(shù)圖象有1個(gè)交點(diǎn),所以函數(shù)f(x)有1個(gè)零點(diǎn). 根據(jù)對(duì)稱性知,當(dāng)x<0時(shí),函數(shù)f(x)也有1個(gè)零點(diǎn).綜上所述,f(x)的零點(diǎn)個(gè)數(shù)為3.] [規(guī)律方法] 函數(shù)零點(diǎn)個(gè)數(shù)的判斷方法 (1)直接求零點(diǎn),令f(x)=0,有幾個(gè)解就有幾個(gè)零點(diǎn); (2)零點(diǎn)存在性定理,要求函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,再結(jié)合函數(shù)的圖象與
10、性質(zhì)確定函數(shù)零點(diǎn)個(gè)數(shù); (3)利用圖象交點(diǎn)個(gè)數(shù),作出兩函數(shù)圖象,觀察其交點(diǎn)個(gè)數(shù)即得零點(diǎn)個(gè)數(shù). (1)函數(shù)f(x)=2x|log0.5 x|-1的零點(diǎn)個(gè)數(shù)為( ) A.1 B.2 C.3 D.4 (2)已知函數(shù)f(x)=若f(0)=-2,f(-1)=1,則函數(shù)g(x)=f(x)+x的零點(diǎn)個(gè)數(shù)為_(kāi)_______. (1)B (2)3 [(1)令f(x)=2x|log0.5x|-1=0, 可得|log0.5x|=x. 設(shè)g(x)=|log0.5x|,h(x)=x. 在同一坐標(biāo)系下分別畫出函數(shù)g(x),h(x)的圖象,可以發(fā)現(xiàn)兩個(gè)函數(shù)圖象一定有2個(gè)交點(diǎn),因此函數(shù)f(x
11、)有2個(gè)零點(diǎn).故選B. (2)依題意得 由此解得 由g(x)=0得f(x)+x=0, 該方程等價(jià)于① 或② 解①得x=2,解②得x=-1或x=-2.因此,函數(shù)g(x)=f(x)+x的零點(diǎn)個(gè)數(shù)為3.] 函數(shù)零點(diǎn)的應(yīng)用 【例2】 (1)設(shè)函數(shù)f(x)=ex+x-2,g(x)=ln x+x2-3.若實(shí)數(shù)a,b滿足f(a)=0,g(b)=0,則( ) A.g(a)<0<f(b) B.f(b)<0<g(a) C.0<g(a)<f(b) D.f(b)<g(a)<0 (2)已知函數(shù)f(x)=其中m>0.若存在實(shí)數(shù)b,使得關(guān)于x的方程f(x)=b有三個(gè)不同的根,則m的取
12、值范圍是________. (1)A (2)(3,+∞) [(1)∵f(x)=ex+x-2, ∴f′(x)=ex+1>0, 則f(x)在R上為增函數(shù), 又f(0)=e0-2<0,f(1)=e-1>0, 且f(a)=0,∴0<a<1.∵g(x)=ln x+x2-3, ∴g′(x)=+2x. 當(dāng)x∈(0,+∞)時(shí),g′(x)>0, ∴g(x)在(0,+∞)上為增函數(shù), 又g(1)=ln 1-2=-2<0,g(2)=ln 2+1>0,且g(b)=0,∴1<b<2,∴a<b, ∴故選A. (2)畫出f(x)的草圖如圖所示,若存在實(shí)數(shù)b,使得f(x)=b有3個(gè)不同的根, 則4m-
13、m2<m,即m2-3m>0, 又m>0,解得m>3.] [規(guī)律方法] 已知函數(shù)有零點(diǎn)求參數(shù)取值范圍常用的方法 (1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)范圍. (2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問(wèn)題加以解決. (3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解. (1)已知函數(shù)f(x)=ex+x,g(x)=ln x+x,h(x)=ln x-1的零點(diǎn)依次為a,b,c,則( ) A.a(chǎn)<b<c B.c<b<a C.c<a<b D.b<a<c (2)函數(shù)f(x)=2x--a的一個(gè)零點(diǎn)在
14、區(qū)間(1,2)內(nèi),則實(shí)數(shù)a的取值范圍是( ) A.(1,3) B.(1,2) C.(0,3) D.(0,2) (1)A (2)C [(1)在同一坐標(biāo)系中,畫出函數(shù)y=ex,y=ln x與y=-x,y=-1的圖象如圖所示. 由圖可知a<b<c, 故選A. (2)∵函數(shù)f(x)=2x--a在區(qū)間(1,2)上單調(diào)遞增,又函數(shù)f(x)=2x--a的一個(gè)零點(diǎn)在區(qū)間(1,2)內(nèi),則有f(1)·f(2)<0, ∴(-a)(4-1-a)<0,即a(a-3)<0,∴0<a<3.] 1.(2018·全國(guó)卷Ⅰ)已知函數(shù)f(x)=g(x)=f(x)+x+a.若g(x)存在2個(gè)零點(diǎn),則
15、a的取值范圍是( ) A.[-1,0) B.[0,+∞) C.[-1,+∞) D.[1,+∞) C [函數(shù)g(x)=f(x)+x+a存在2個(gè)零點(diǎn),即關(guān)于x的方程f(x)=-x-a有2個(gè)不同的實(shí)根,即函數(shù)f(x)的圖象與直線y=-x-a有2個(gè)交點(diǎn),作出直線y=-x-a與函數(shù)f(x)的圖象,如圖所示, 由圖可知,-a≤1,解得a≥-1,故選C.] 2.(2017·全國(guó)卷Ⅲ)已知函數(shù)f(x)=x2-2x+a(ex-1+e-x+1)有唯一零點(diǎn),則a=( ) A.- B. C. D.1 C [法一:f(x)=x2-2x+a(ex-1+e-x+1)=(x-1)2+
16、a[ex-1+e-(x-1)]-1, 令t=x-1,則g(t)=f(t+1)=t2+a(et+e-t)-1. ∵g(-t)=(-t)2+a(e-t+et)-1=g(t), ∴函數(shù)g(t)為偶函數(shù). ∵f(x)有唯一零點(diǎn),∴g(t)也有唯一零點(diǎn). 又g(t)為偶函數(shù),由偶函數(shù)的性質(zhì)知g(0)=0, ∴2a-1=0,解得a=. 故選C. 法二:f(x)=0?a(ex-1+e-x+1)=-x2+2x. ex-1+e-x+1≥2=2, 當(dāng)且僅當(dāng)x=1時(shí)取“=”. 又-x2+2x=-(x-1)2+1≤1,當(dāng)且僅當(dāng)x=1時(shí)取“=”. 若a>0,則a(ex-1+e-x+1)≥2a, 要使f(x)有唯一零點(diǎn),則必有2a=1,即a=. 若a≤0,則f(x)的零點(diǎn)不唯一. 故選C.] - 7 -
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)藥代表工作知識(shí)和日常任務(wù)-PPT
- 高中語(yǔ)文 第四單元第13課《動(dòng)物游戲之謎》課件(2) 新人教版必修3
- 人教部編版一年級(jí)下冊(cè)識(shí)字古對(duì)今課件
- 動(dòng)眼神經(jīng)麻痹-PPT
- 人教版道德與法治九年級(jí)上冊(cè)正視發(fā)展挑戰(zhàn)演講教學(xué)課件
- 止血與抗凝專題知識(shí)專家講座
- 七年級(jí)生物下冊(cè) 第三單元第二章第二節(jié)人體怎樣獲得能量課件 濟(jì)南版
- 人教版化學(xué)九年級(jí)上冊(cè)-第4單元自然界的水課題4化學(xué)式與化合價(jià)第3課時(shí)同步課件
- 日常生活防火安全分享
- 七年級(jí)數(shù)學(xué)上冊(cè) 《相反數(shù)》課件 華東師大版
- 第三章第二節(jié)流域的綜合開(kāi)發(fā)——以美國(guó)田納西河流域?yàn)槔?/a>
- 如何去除痘痘
- 七年級(jí)政治上冊(cè) 第四課《我們屬于多種群體》課件 人民版
- 大眾點(diǎn)評(píng)網(wǎng)合作方案-1
- 2011高考化學(xué)一輪復(fù)習(xí)《電離平衡》課件 人教大綱版