七年級數(shù)學(xué)下學(xué)期期中試卷(含解析) 新人教版(IV)
《七年級數(shù)學(xué)下學(xué)期期中試卷(含解析) 新人教版(IV)》由會員分享,可在線閱讀,更多相關(guān)《七年級數(shù)學(xué)下學(xué)期期中試卷(含解析) 新人教版(IV)(16頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、七年級數(shù)學(xué)下學(xué)期期中試卷(含解析) 新人教版(IV) 一、選擇題(本題共10小題,每小題3分,共30分) 1.下列運(yùn)算正確的是( ?。? A.x2+x3=x5 B.(﹣2a2)3=﹣8a6 C.x2?x3=x6 D.x6÷x2=x3 2.下列圖形中,∠1與∠2不是同位角的是( ?。? A. B. C. D. 3.化簡,其結(jié)果是( ?。? A. B. C. D. 4.若方程組的解是,則方程組的解是( ?。? A. B. C. D. 5.已知關(guān)于x的方程有增根,則k=( ?。? A.﹣1 B.1 C.﹣2 D.除﹣1以外的數(shù) 6.如圖,直線l∥m,將含有45°角的三角形板ABC的直角
2、頂點(diǎn)C放在直線m上,若∠1=20°,則∠2的度數(shù)為( ?。? A.20° B.25° C.30° D.35° 7.若a1,a2,a3,…,axx,axx均為正數(shù),M=(a1+a2+…+axx)?(a2+a3+…+axx),又N=(a1+a2+…+axx)?(a2+a3+…+axx),則M與N的大小關(guān)系是( ?。? A.M=N B.M<N C.M>N D.無法比較 8.如圖,有a、b、c三戶家用電路接入電表,相鄰電路的電線等距排列,則三戶所用電線( ) A.a(chǎn)戶最長 B.b戶最長 C.c戶最長 D.三戶一樣長 9.如果一個(gè)正整數(shù)能表示為兩個(gè)正整數(shù)的平方差,那么這個(gè)正整數(shù)稱為“智
3、慧數(shù)”,按你的理解,下列4個(gè)數(shù)中不是“智慧數(shù)”的是( ?。? A.xx B.2003 C.xx D.xx 10.某市政公司修理一段6000米長的河岸,修了30天后,從有關(guān)部門獲知汛期將提前,公司決定增派施工人員以加快速度,工作效率比原來提高了20%,工程恰好比原計(jì)劃提前5天完成.求該公司完成這項(xiàng)工作實(shí)際的天數(shù).設(shè)原來每天修x米,運(yùn)用“計(jì)劃天數(shù)﹣實(shí)際天數(shù)=5”構(gòu)建分式方程,下列說法不正確的是( ) A.原計(jì)劃完工天數(shù)為天 B.30天后剩下河岸還需天修完 C.實(shí)際天數(shù)為(﹣4)天 D.實(shí)際天數(shù)為(+30)天 二、填空題(本題共8小題,每小題3分,共24分) 11.若將(2x)
4、n﹣81分解成(4x2+9)(2x+3)(2x﹣3),則n的值是 ?。? 12.已知﹣=3,則分式的值為 ?。? 13.已知關(guān)于x,y的方程組和的解相同,則代數(shù)式3a+7b的值為 ?。? 14.若多項(xiàng)式x3+ax2+bx能被x﹣5和x﹣6整除,則a= ,b= ?。? 15.為豐富學(xué)生的課余活動,陶冶學(xué)生的情趣和愛好,某校開展了學(xué)生社團(tuán)活動,為了解學(xué)生各類活動的參加情況,該校對七年級學(xué)生社團(tuán)活動進(jìn)行了抽樣調(diào)查,制作出如下的統(tǒng)計(jì)圖: 根據(jù)上述統(tǒng)計(jì)圖,完成以下問題: 該校參加藝術(shù)類的社團(tuán)學(xué)生中,女生人數(shù)是男生人數(shù)的2倍,現(xiàn)該校共有學(xué)生1600名,請估算該校參加藝術(shù)類社團(tuán)中女生有 人.
5、16.某人步行了5小時(shí),先沿著平路走,然后上山,最后又沿原路返回.假如他在平路上每小時(shí)走4里,上山每小時(shí)走3里,下山的速度是6里/小時(shí),則他從出發(fā)到返回原地的平均速度是 里/小時(shí). 17.已知關(guān)于x的分式方程﹣=1的解為負(fù)數(shù),則k的取值范圍是 ?。? 18.如果a,b,c是正數(shù),且滿足a+b+c=9, ++=,那么++的值為 ?。? 三、解答題(本題有7個(gè)小題,共46分) 19.計(jì)算:(﹣2)2+()0﹣﹣()﹣1 (2)解方程:. 20.先化簡(),然后從x=﹣1,0,1,2中選一個(gè)你喜歡的數(shù)作為x的值代入求值. 21.如圖,CD∥AB,∠DCB=70°,∠CBF=20°,
6、∠EFB=130°,問直線EF與AB有怎樣的位置關(guān)系?為什么? 22.我們知道,假分?jǐn)?shù)可以化為整數(shù)與真分?jǐn)?shù)的和的形式.例如: =1+.在分式中,對于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.例如:像,,…這樣的分式是假分式;像,,…這樣的分式是真分式.類似的,假分式也可以化為整式與真分式的和的形式. 例如: ==+=1+; ===x+2+. (1)將分式化為整式與真分式的和的形式; (2)如果分式的值為整數(shù),求x的整數(shù)值. 23.一幅直角三角形疊放如圖①所示,其中直角邊AC與AE重合,斜邊A
7、B與AD在AC的同側(cè),現(xiàn)將含45°角的三角板ADE固定不動,含30°角的三角板ABC繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)角a(0°<a<180°),使兩塊三角板至少有一組邊平行. (1)求圖①中∠BAD的度數(shù); (2)請你在圖②,③中各畫一種符合要求的圖形,并寫出對應(yīng)的a的度數(shù)和平行線段. 24.圖a是一個(gè)長2m,寬2n的長方形,沿虛線平均分成四塊,然后按圖b拼成一個(gè)正方形. (1)圖b中的陰影部分的面積表示為 ,并且有(m+n)2,(m﹣n)2,mn之間的等量關(guān)系為 ??; (2)利用(1)的結(jié)論,思考:若x+y=﹣2,xy=﹣1.25,則x﹣y= ; (3)觀察圖c,利用圖中表述的代數(shù)恒等
8、式,思考:若方程2x2+3xy+y2=0(y≠0),則= ; (4)用圖c中三個(gè)陰影圖形,每個(gè)至少用一次,拼成一個(gè)面積為2m2+5mn+2n2長方形(圖形之間不重疊無縫隙)畫出圖形(盡可能根原圖一樣標(biāo)準(zhǔn)并標(biāo)出此長方形的長和寬) xx學(xué)年浙江省寧波市鄞州藍(lán)青學(xué)校七年級(下)期中數(shù)學(xué)試卷 參考答案與試題解析 一、選擇題(本題共10小題,每小題3分,共30分) 1.下列運(yùn)算正確的是( ?。? A.x2+x3=x5 B.(﹣2a2)3=﹣8a6 C.x2?x3=x6 D.x6÷x2=x3 【考點(diǎn)】同底數(shù)冪的除法;合并同類項(xiàng);同底數(shù)冪的乘法;冪的乘方與積的乘方. 【分
9、析】根據(jù)同類項(xiàng)的定義,冪的乘方以及積的乘方,同底數(shù)的冪的乘法與除法法則即可作出判斷. 【解答】解:A、不是同類項(xiàng),不能合并,故選項(xiàng)錯(cuò)誤; B、正確; C、x2?x3=x5,故選項(xiàng)錯(cuò)誤; D、x6÷x2=x4,故選項(xiàng)錯(cuò)誤. 故選B. 【點(diǎn)評】本題考查同底數(shù)冪的除法,合并同類項(xiàng),同底數(shù)冪的乘法,冪的乘方很容易混淆,一定要記準(zhǔn)法則才能做題. 2.下列圖形中,∠1與∠2不是同位角的是( ?。? A. B. C. D. 【考點(diǎn)】同位角、內(nèi)錯(cuò)角、同旁內(nèi)角. 【分析】同位角的定義:在截線的同側(cè),并且在被截線的同一方的兩個(gè)角是同位角. 【解答】解:A圖中,∠1與∠2有一邊在同一條直線
10、上,另一條邊在被截線的同一方,是同位角,不符合題意; B圖中,∠1與∠2有一條邊在同一條直線上,另一條邊在被截線的同一方,是同位角,不符合題意; C圖中,∠1與∠2的兩條邊都不在同一條直線上,不是同位角,符合題意; D圖中,∠1與∠2有一邊在同一條直線上,另一條邊在被截線的同一方,是同位角,不符合題意. 故選:C. 【點(diǎn)評】此題主要考查了同位角、內(nèi)錯(cuò)角、同旁內(nèi)角等知識,判斷是否是同位角,必須符合三線八角中,在截線的同側(cè),并且在被截線的同一方的兩個(gè)角是同位角. 3.化簡,其結(jié)果是( ) A. B. C. D. 【考點(diǎn)】分式的混合運(yùn)算. 【分析】對于分式混合運(yùn)算,其實(shí)也就
11、是在同一個(gè)算式中,綜合了分式的加減、乘除及乘方中的一種或幾種運(yùn)算,關(guān)鍵是要注意各種運(yùn)算的先后順序. 【解答】解:原式=[+]× =+)×, =﹣, =, =, =, 故選D. 【點(diǎn)評】對于一般的分式混合運(yùn)算來講,其運(yùn)算順序與整式混合運(yùn)算一樣,是先乘方,再乘除,最后算加減,如果遇括號要先算括號里面的.在此基礎(chǔ)上,有時(shí)也應(yīng)該根據(jù)具體問題的特點(diǎn),靈活應(yīng)變,注意方法. 4.若方程組的解是,則方程組的解是( ?。? A. B. C. D. 【考點(diǎn)】二元一次方程組的解. 【分析】根據(jù)加減法,可得(x+2)、(y﹣1)的解,再根據(jù)解方程,可得答案. 【解答】解:∵方程組的解是,
12、 ∴方程組中 ∴ 故選:C. 【點(diǎn)評】本題考查了二元一次方程組的解,解決本題的關(guān)鍵是先求(x+2)、(y﹣1)的解,再求x、y的值. 5.已知關(guān)于x的方程有增根,則k=( ?。? A.﹣1 B.1 C.﹣2 D.除﹣1以外的數(shù) 【考點(diǎn)】分式方程的增根. 【專題】計(jì)算題;分式方程及應(yīng)用. 【分析】分式方程去分母轉(zhuǎn)化為整式方程,由分式方程有增根得到x﹣1=0,求出x的值,代入整式方程計(jì)算即可求出k的值. 【解答】解:去分母得:k+1=﹣x, 由分式方程有增根,得到x﹣1=0,即x=1, 把x=1代入整式方程得:k=﹣2, 故選C 【點(diǎn)評】此題考查了分式方程的增根,增
13、根確定后可按如下步驟進(jìn)行:①化分式方程為整式方程;②把增根代入整式方程即可求得相關(guān)字母的值. 6.如圖,直線l∥m,將含有45°角的三角形板ABC的直角頂點(diǎn)C放在直線m上,若∠1=20°,則∠2的度數(shù)為( ) A.20° B.25° C.30° D.35° 【考點(diǎn)】平行線的性質(zhì). 【分析】過點(diǎn)B作BD∥l,然后根據(jù)平行公理可得BD∥l∥m,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠3=∠1,然后求出∠4,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠2=∠4,即可得解. 【解答】解:如圖,過點(diǎn)B作BD∥l, ∵直線l∥m, ∴BD∥l∥m, ∴∠3=∠1=20°, ∵△ABC是有一個(gè)
14、角是45°的直角三角板, ∴∠4=45°﹣∠3=45°﹣24°=25°, ∴∠2=∠4=25°. 故選B. 【點(diǎn)評】本題考查的是平行線的性質(zhì),根據(jù)題意作出平行線是解答此題的關(guān)鍵. 7.若a1,a2,a3,…,axx,axx均為正數(shù),M=(a1+a2+…+axx)?(a2+a3+…+axx),又N=(a1+a2+…+axx)?(a2+a3+…+axx),則M與N的大小關(guān)系是( ?。? A.M=N B.M<N C.M>N D.無法比較 【考點(diǎn)】整式的混合運(yùn)算. 【分析】先求出M﹣N的值,再根據(jù)求出的結(jié)果比較即可. 【解答】解:∵a1,a2,a3,…,axx,axx均為正數(shù)
15、,M=(a1+a2+…+axx)?(a2+a3+…+axx),又N=(a1+a2+…+axx)?(a2+a3+…+axx), ∴M﹣N=(a1+a2+…+axx)?(a2+a3+…+axx)﹣(a1+a2+…+axx)?(a2+a3+…+axx) =(a1+a2+…+axx)?(a2+a3+…+axx+axx)﹣(a1+a2+…+axx+axx)?(a2+a3+…+axx) =(a1+a2+…+axx)?(a2+a3+…+axx)+(a1+a2+…+axx)?axx﹣(a1+a2+…+axx)?(a2+a3+…+axx)﹣axx?(a2+a3+…+axx) =a1?axx>0, 則M
16、與N的大小關(guān)系是M>N, 故選C. 【點(diǎn)評】本題考查了整式的混合運(yùn)算,能選擇適當(dāng)?shù)姆椒ū容^兩個(gè)數(shù)的大小是解此題的關(guān)鍵. 8.如圖,有a、b、c三戶家用電路接入電表,相鄰電路的電線等距排列,則三戶所用電線( ) A.a(chǎn)戶最長 B.b戶最長 C.c戶最長 D.三戶一樣長 【考點(diǎn)】生活中的平移現(xiàn)象. 【專題】探究型. 【分析】可理解為將最左邊一組電線向右平移所得,由平移的性質(zhì)即可得出結(jié)論. 【解答】解:∵a、b、c三戶家用電路接入電表,相鄰電路的電線等距排列, ∴將a向右平移即可得到b、c, ∵圖形的平移不改變圖形的大小, ∴三戶一樣長. 故選D. 【點(diǎn)評】本題
17、考查的是生活中的平移現(xiàn)象,熟知圖形平移的性質(zhì)是解答此題的關(guān)鍵. 9.如果一個(gè)正整數(shù)能表示為兩個(gè)正整數(shù)的平方差,那么這個(gè)正整數(shù)稱為“智慧數(shù)”,按你的理解,下列4個(gè)數(shù)中不是“智慧數(shù)”的是( ?。? A.xx B.2003 C.xx D.xx 【考點(diǎn)】平方差公式. 【專題】計(jì)算題;整式. 【分析】設(shè)k是正整數(shù),根據(jù)平方差公式得到(k+1)2﹣k2=2k+1;(k+1)2﹣(k﹣1)2=4k,利用“智慧數(shù)”定義判斷即可. 【解答】解:設(shè)k是正整數(shù), ∵(k+1)2﹣k2=(k+1+k)(k+1﹣k)=2k+1, ∴除1以外,所有的奇數(shù)都是智慧數(shù); ∵(k+1)2﹣(k﹣1)2=(
18、k+1+k﹣1)(k+1﹣k+1)=4k, ∴除4以外,所有能被4整除的偶數(shù)都是智慧數(shù), ∵xx與xx都是奇數(shù),xx÷4=501, ∴xx,xx與xx都是“智慧樹”,xx不是“智慧樹”, 故選A 【點(diǎn)評】此題考查了平方差公式,弄清題中“智慧樹”的新定義是解本題的關(guān)鍵. 10.某市政公司修理一段6000米長的河岸,修了30天后,從有關(guān)部門獲知汛期將提前,公司決定增派施工人員以加快速度,工作效率比原來提高了20%,工程恰好比原計(jì)劃提前5天完成.求該公司完成這項(xiàng)工作實(shí)際的天數(shù).設(shè)原來每天修x米,運(yùn)用“計(jì)劃天數(shù)﹣實(shí)際天數(shù)=5”構(gòu)建分式方程,下列說法不正確的是( ?。? A.原計(jì)劃完工
19、天數(shù)為天 B.30天后剩下河岸還需天修完 C.實(shí)際天數(shù)為(﹣4)天 D.實(shí)際天數(shù)為(+30)天 【考點(diǎn)】由實(shí)際問題抽象出分式方程. 【分析】設(shè)原來每天修x米,則30天后每天修(1+20%)x=1.2x米,根據(jù)“修路的長度=每天修的長度×天數(shù)”逐一判斷即可. 【解答】解:設(shè)原來每天修x米,則原計(jì)劃完工天數(shù)為天,故A正確; ∵30天后每天修(1+20%)x=1.2x米, ∴30天后剩下河岸還需天修完,故B正確; ∵工程恰好比原計(jì)劃提前5天完成, ∴實(shí)際天數(shù)為﹣5天,故C錯(cuò)誤; 或?qū)嶋H天數(shù)為(+30)天,故D正確; 故選:C. 【點(diǎn)評】本題主要考查了分式方程的應(yīng)用,正確找到
20、相等關(guān)系,理解實(shí)際工作效率比原計(jì)劃提高了20%的含義是解題的關(guān)鍵. 二、填空題(本題共8小題,每小題3分,共24分) 11.若將(2x)n﹣81分解成(4x2+9)(2x+3)(2x﹣3),則n的值是 4?。? 【考點(diǎn)】因式分解-運(yùn)用公式法. 【分析】因式分解與整式乘法是互逆運(yùn)算,可以將分解的結(jié)果進(jìn)行乘法運(yùn)算,得到原多項(xiàng)式. 【解答】解:(4x2+9)(2x+3)(2x﹣3)=(4x2+9)(4x2﹣9)=16x4﹣81=(2x)4﹣81. 故答案為4. 【點(diǎn)評】本題考查了平方差公式,兩次利用平方差公式計(jì)算后根據(jù)指數(shù)相等求解即可. 12.已知﹣=3,則分式的值為 ?。?/p>
21、 【考點(diǎn)】分式的值. 【專題】壓軸題;整體思想. 【分析】由已知條件可知xy≠0,根據(jù)分式的基本性質(zhì),先將分式的分子、分母同時(shí)除以xy,再把﹣=3代入即可. 【解答】解:∵﹣=3, ∴x≠0,y≠0, ∴xy≠0. ∴=====. 故答案為:. 【點(diǎn)評】本題主要考查了分式的基本性質(zhì)及求分式的值的方法,把﹣=3作為一個(gè)整體代入,可使運(yùn)算簡便. 13.已知關(guān)于x,y的方程組和的解相同,則代數(shù)式3a+7b的值為 ﹣18?。? 【考點(diǎn)】二元一次方程組的解. 【專題】推理填空題. 【分析】將兩方程組的第一個(gè)方程聯(lián)立求出x與y的值,代入剩余的兩方程求出a與b的值,即可確定出所
22、求式子的值. 【解答】解:由于兩個(gè)方程組的解相同, 所以方程組,即是它們的公共解, 解得:, 把這對值分別代入剩余兩個(gè)方程,得, 解得:, 則3a+7b=3﹣21=﹣18. 故答案為:﹣18. 【點(diǎn)評】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值. 14.若多項(xiàng)式x3+ax2+bx能被x﹣5和x﹣6整除,則a= ﹣11 ,b= 6?。? 【考點(diǎn)】整式的除法. 【分析】因?yàn)槎囗?xiàng)式x3+ax2+bx可被x﹣5和x﹣6整除,則說明(x﹣5)、(x﹣6)都是多項(xiàng)式x3+ax2+bx的一個(gè)因式,故使(x﹣5)、(x﹣6)等于0的數(shù)必是多項(xiàng)式x3
23、+ax2+bx的解,即把x﹣5=0、x﹣6=0求出的x的值代入多項(xiàng)式,即得到關(guān)于a、b的二元一次方程,從而求出a,b即可. 【解答】解:由已知得,x=5,x=6, , ∴, 故答案為﹣11,6. 【點(diǎn)評】本題考查了整式的除法,注意理解整除的含義,比如A被B整除,另外一層意思也就是說,B是A的公因式,使公因式B等于0的值,必是A的一個(gè)解. 15.為豐富學(xué)生的課余活動,陶冶學(xué)生的情趣和愛好,某校開展了學(xué)生社團(tuán)活動,為了解學(xué)生各類活動的參加情況,該校對七年級學(xué)生社團(tuán)活動進(jìn)行了抽樣調(diào)查,制作出如下的統(tǒng)計(jì)圖: 根據(jù)上述統(tǒng)計(jì)圖,完成以下問題: 該校參加藝術(shù)類的社團(tuán)學(xué)生中,女生人數(shù)
24、是男生人數(shù)的2倍,現(xiàn)該校共有學(xué)生1600名,請估算該校參加藝術(shù)類社團(tuán)中女生有 320 人. 【考點(diǎn)】用樣本估計(jì)總體;扇形統(tǒng)計(jì)圖;條形統(tǒng)計(jì)圖. 【分析】求出樣本中男女生的人數(shù),以及所占的百分比,乘以1600即可得到結(jié)果. 【解答】解:根據(jù)題意得:40÷40%=100(名);藝術(shù)的人數(shù)為100﹣(40+20+30)=10(名), 根據(jù)題意得:女生占文學(xué)類人數(shù)的,即女生人數(shù)為30×=20(人), 則女生占的百分比為20%, 則該校共有學(xué)生1600名,請估算該校參加文學(xué)類社團(tuán)女生有1600×20%=320人. 故答案為:320. 【點(diǎn)評】此題考查了條形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖,以及用樣本估計(jì)
25、總體,弄清題意是解本題的關(guān)鍵. 16.某人步行了5小時(shí),先沿著平路走,然后上山,最后又沿原路返回.假如他在平路上每小時(shí)走4里,上山每小時(shí)走3里,下山的速度是6里/小時(shí),則他從出發(fā)到返回原地的平均速度是 4 里/小時(shí). 【考點(diǎn)】由實(shí)際問題抽象出二元一次方程. 【專題】行程問題. 【分析】由于平均速度=總路程÷總時(shí)間,而總時(shí)間為5小時(shí),所以求出此人行駛的總路程即可.為此,設(shè)平路有x里,山路有y里,根據(jù)平路用時(shí)+上坡用時(shí)+下坡用時(shí)+平路用時(shí)=5小時(shí),即可求出x+y的值,再乘以2即為總路程. 【解答】解:設(shè)平路有x里,山路有y里. 根據(jù)題意得:, 即, ∴x+y=10(里).
26、∴此人共走的路程=2×10=20(里), ∴平均速度=20÷5=4(里/小時(shí)). 故答案為4. 【點(diǎn)評】本題考查了二元一次方程在行程問題中的應(yīng)用.基本關(guān)系式為:路程=速度×?xí)r間.本題把5小時(shí)路程劃分為平路和山路是解決本題的突破點(diǎn),關(guān)鍵在于理解去時(shí)的上山路程即為回時(shí)的下山路程. 17.已知關(guān)于x的分式方程﹣=1的解為負(fù)數(shù),則k的取值范圍是 k>且k≠1 . 【考點(diǎn)】分式方程的解. 【專題】計(jì)算題. 【分析】分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,根據(jù)解為負(fù)數(shù)確定出k的范圍即可. 【解答】解:去分母得:(x+k)(x﹣1)﹣k(x+1)=x2﹣1, 去括號
27、得:x2﹣x+kx﹣k﹣kx﹣k=x2﹣1, 移項(xiàng)合并得:x=1﹣2k, 根據(jù)題意得:1﹣2k<0,且1﹣2k≠±1 解得:k>且k≠1 故答案為:k>且k≠1. 【點(diǎn)評】此題考查了分式方程的解,本題需注意在任何時(shí)候都要考慮分母不為0. 18.如果a,b,c是正數(shù),且滿足a+b+c=9, ++=,那么++的值為 7?。? 【考點(diǎn)】分式的化簡求值. 【分析】先根據(jù)題意得出a=9﹣b﹣c,b=9﹣a﹣c,c=9﹣a﹣b,再代入原式進(jìn)行計(jì)算即可. 【解答】解:∵a,b,c是正數(shù),且滿足a+b+c=9, ∴a=9﹣b﹣c,b=9﹣a﹣c,c=9﹣a﹣b, ∴原式=++ =+
28、+﹣3 =9×﹣3 =7. 故答案為:7. 【點(diǎn)評】本題考查的是分式的化簡求值,熟知分式混合運(yùn)算的法則是解答此題的關(guān)鍵. 三、解答題(本題有7個(gè)小題,共46分) 19.(1)計(jì)算:(﹣2)2+()0﹣﹣()﹣1 (2)解方程:. 【考點(diǎn)】解分式方程;實(shí)數(shù)的運(yùn)算;零指數(shù)冪;負(fù)整數(shù)指數(shù)冪. 【專題】計(jì)算題;分式方程及應(yīng)用. 【分析】(1)原式利用乘方的意義,零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,以及算術(shù)平方根定義計(jì)算即可得到結(jié)果; (2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解. 【解答】解:(1)原式=4+1﹣2﹣2=1; (2)
29、去分母得:x2+2x+1﹣4=x2﹣1, 解得:x=1, 經(jīng)檢驗(yàn)x=1是增根,分式方程無解. 【點(diǎn)評】此題考查了解分式方程,以及實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵. 20.先化簡(),然后從x=﹣1,0,1,2中選一個(gè)你喜歡的數(shù)作為x的值代入求值. 【考點(diǎn)】分式的化簡求值. 【分析】先算括號里面的,再把除法化為乘法,因式分解,再約分即可. 【解答】解:原式=(﹣)? =? =﹣, ∵x≠﹣1,2, ∴x=0, 原式=﹣=1. 【點(diǎn)評】本題考查了分式的化簡求值,掌握分式的約分、通分是解題的關(guān)鍵. 21.如圖,CD∥AB,∠DCB=70°,∠CBF=
30、20°,∠EFB=130°,問直線EF與AB有怎樣的位置關(guān)系?為什么? 【考點(diǎn)】平行線的判定與性質(zhì). 【專題】探究型. 【分析】兩直線的位置關(guān)系有兩種:平行和相交,根據(jù)圖形可以猜想兩直線平行,然后根據(jù)條件探求平行的判定條件. 【解答】平行. 證明:∵CD∥AB, ∴∠ABC=∠DCB=70°; 又∵∠CBF=20°, ∴∠ABF=∠ABC﹣∠CBF=70°﹣20°=50°; ∴∠ABF+∠EFB=50°+130°=180°; ∴EF∥AB(同旁內(nèi)角互補(bǔ),兩直線平行). 【點(diǎn)評】證明兩直線平行的方法就是轉(zhuǎn)化為證明兩角相等或互補(bǔ). 22.我們知道,假分?jǐn)?shù)可以化為整
31、數(shù)與真分?jǐn)?shù)的和的形式.例如: =1+.在分式中,對于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.例如:像,,…這樣的分式是假分式;像,,…這樣的分式是真分式.類似的,假分式也可以化為整式與真分式的和的形式. 例如: ==+=1+; ===x+2+. (1)將分式化為整式與真分式的和的形式; (2)如果分式的值為整數(shù),求x的整數(shù)值. 【考點(diǎn)】分式的混合運(yùn)算. 【專題】閱讀型. 【分析】(1)根據(jù)題意把分式化為整式與真分式的和的形式即可; (2)根據(jù)題中所給出的例子把原式化為整式與真分式的和形式,
32、再根據(jù)分式的值為整數(shù)即可得出x的值. 【解答】解:(1)原式= =﹣ =1﹣; (2)原式= = =2(x+1)+, ∵分式的值為整數(shù),且x為整數(shù), ∴x﹣1=±1, ∴x=2或0. 【點(diǎn)評】本題考查了分式的混合運(yùn)算,熟知分式混合運(yùn)算的法則是解答此題的關(guān)鍵. 23.一幅直角三角形疊放如圖①所示,其中直角邊AC與AE重合,斜邊AB與AD在AC的同側(cè),現(xiàn)將含45°角的三角板ADE固定不動,含30°角的三角板ABC繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)角a(0°<a<180°),使兩塊三角板至少有一組邊平行. (1)求圖①中∠BAD的度數(shù); (2)請你在圖②,③中各畫一種符合要求的圖
33、形,并寫出對應(yīng)的a的度數(shù)和平行線段. 【考點(diǎn)】平行線的性質(zhì). 【分析】(1)根據(jù)∠BAD=∠DAE﹣∠BAC計(jì)算即可得解; (2)根據(jù)圖形作出BC∥AD和AC∥DE兩種情況的圖形,然后根據(jù)平行線的性質(zhì)寫出旋轉(zhuǎn)角即可. 【解答】解:(1)∠BAD=∠DAE﹣∠BAC =45°﹣30° =15°; (2)如圖②若BC∥AD,則α=90°﹣30°=60°, 如圖③,若AC∥DE,則α=∠CAD﹣∠BAC=(180°﹣45°)﹣30°=105°. 【點(diǎn)評】本題考查了平行線的性質(zhì),旋轉(zhuǎn),三角尺的知識,熟記性質(zhì)是解題的關(guān)鍵,難點(diǎn)在于(2)根據(jù)對應(yīng)邊的不同作出圖形. 2
34、4.圖a是一個(gè)長2m,寬2n的長方形,沿虛線平均分成四塊,然后按圖b拼成一個(gè)正方形. (1)圖b中的陰影部分的面積表示為?。╩+n)2﹣4mn ,并且有(m+n)2,(m﹣n)2,mn之間的等量關(guān)系為?。╩﹣n)2=(m+n)2﹣4mn ; (2)利用(1)的結(jié)論,思考:若x+y=﹣2,xy=﹣1.25,則x﹣y= ±3?。? (3)觀察圖c,利用圖中表述的代數(shù)恒等式,思考:若方程2x2+3xy+y2=0(y≠0),則= ﹣1或﹣ ; (4)用圖c中三個(gè)陰影圖形,每個(gè)至少用一次,拼成一個(gè)面積為2m2+5mn+2n2長方形(圖形之間不重疊無縫隙)畫出圖形(盡可能根原圖一樣標(biāo)準(zhǔn)并標(biāo)出此長方形
35、的長和寬) 【考點(diǎn)】完全平方公式的幾何背景. 【分析】(1)陰影部分的面積=大正方形面積﹣4個(gè)長方形面積得出結(jié)論; (2)代入(1)式計(jì)算即可; (3)利用圖b分解因式,解方程; (4)仿照(3)畫圖,利用面積得出邊長. 【解答】解:(1)圖b中的陰影部分的面積表示為:(m+n)2﹣4mn,還可以表示為:(m﹣n)2, ∴(m﹣n)2=(m+n)2﹣4mn, 故答案為:(m+n)2﹣4mn,(m﹣n)2=(m+n)2﹣4mn; (2)(x﹣y)2=x2﹣2xy+y2, =(x+y)2﹣4xy, =(﹣2)2﹣4×(﹣1.25), =9, ∴x﹣y=±3, 故答案為:±3; (3)由圖c得:(2m+n)(m+n)=2m2+3mn+n2, 2x2+3xy+y2=0, (2x+y)(x+y)=0, 2x+y=0或x+y=0, x=﹣y或x=﹣y, 當(dāng)x=﹣y時(shí), =﹣, 當(dāng)x=﹣y時(shí), =﹣1, 故答案為:﹣1或﹣; (4)如圖d,長方形面積為:(2m+n)(m+2n)=2m2+5mn+2n2. 【點(diǎn)評】本題是完全平方公式的幾何背景,運(yùn)用幾何直觀理解、解決完全平方公式的推導(dǎo)過程,通過幾何圖形的面積對完全平方公式做出幾何解釋.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。