影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高三數(shù)學總復習 集合之間的關(guān)系教案 理

上傳人:xt****7 文檔編號:105134221 上傳時間:2022-06-11 格式:DOC 頁數(shù):5 大?。?2.52KB
收藏 版權(quán)申訴 舉報 下載
2022年高三數(shù)學總復習 集合之間的關(guān)系教案 理_第1頁
第1頁 / 共5頁
2022年高三數(shù)學總復習 集合之間的關(guān)系教案 理_第2頁
第2頁 / 共5頁
2022年高三數(shù)學總復習 集合之間的關(guān)系教案 理_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學總復習 集合之間的關(guān)系教案 理》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學總復習 集合之間的關(guān)系教案 理(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高三數(shù)學總復習 集合之間的關(guān)系教案 理 教材分析 集合之間的關(guān)系是集合運算的基礎(chǔ)和前提,是用集合觀點理清集合之間內(nèi)在聯(lián)系的橋梁和工具.這節(jié)內(nèi)容是對集合的基本概念的深化,延伸,首先通過類比、實例引出子集的概念,再結(jié)合實例加以說明,然后通過實例說明子集包括真子集和兩集合相等兩種情況.這節(jié)內(nèi)容的教學重點是子集的概念,教學難點是弄清元素與子集、屬于與包含之間的區(qū)別. 教學目標 1. 通過對子集概念的歸納、抽象和概括,體驗數(shù)學概念產(chǎn)生和形成的過程,培養(yǎng)學生的抽象、概括能力. 2. 了解集合的包含、相等關(guān)系的意義,理解子集、真子集的概念,培養(yǎng)學生對數(shù)學的理解能力. 3. 通過對集合之

2、間的關(guān)系即子集的學習,初步體會數(shù)學知識發(fā)生、發(fā)展、運用的過程,培養(yǎng)學生的科學思維方法. 任務分析 這節(jié)內(nèi)容是在學生已經(jīng)掌握了集合的概念和表示方法以及兩個實數(shù)之間有大小關(guān)系的基礎(chǔ)上,進一步學習和研究兩個集合之間的關(guān)系,采用從實例入手,由具體到抽象,由特殊到一般,再由抽象、一般到具體、特殊的方法,知識的產(chǎn)生、發(fā)生比較自然,易于學習、接受和掌握;采用分類討論的方法闡述子集包括真子集、等集(兩集合相等)兩種情況,這可以使學生更好地認識子集、真子集、等集三者之間的內(nèi)在聯(lián)系. 教學設(shè)計 一、問題情境 1. 元素與集合之間的關(guān)系是什么? 元素與集合是從屬關(guān)系,即對一個元素x是某集合A中的元素時,

3、它們的關(guān)系為x∈A.若一個對象x不是某集合A中的元素時,它們的關(guān)系為xA. 2. 集合有哪些表示方法? 列舉法,描述法,Venn圖法. 數(shù)與數(shù)之間存在著大小關(guān)系,那么,兩個集合之間是不是也存在著類似的關(guān)系呢?先看下面兩個集合:A={1,2,3},B={1,2,3,4,5}.它們之間有什么關(guān)系呢? 二、建立模型 1. 引導學生分析討論 集合A中的任何一個元素都是集合B中的元素. 集合B中的元素4,5不是集合A中的元素. 2. 與學生共同歸納,明晰子集的定義 對于上述問題,教師點撥,A是B的子集,B不是A的子集. 子集:對于兩個集合A,B,如果集合A中的任何一個元素都是集合B中

4、的元素,即集合A包含于集合B,或集合B包含集合A,記作AB(或BA),就說集合A是集合B的子集. 用符號語言可表示為:如果任意元素x∈A,都有x∈B,那么AB. 規(guī)定:空集是任何集合的子集,即對于任意一個集合A,有A. 3. 提出問題,組織學生討論 給出三個集合:A={1,2,3},B={1,2,3,4,5},C={1,2,3}. (1)A是B的子集嗎?B是A的子集嗎? (2)A是C的子集嗎?C是A的子集嗎? 4. 教師給出真子集與兩集合相等的定義 上述問題中,集合A是集合B的子集,并且集合B中有元素不屬于集合A,這時,我們就說集合A是集合B的真子集;集合A是集合C的子集,且集

5、合A與集合C的元素完全相同,這時,我們就說集合A與集合C相等. 真子集:如果集合A是集合B的子集,即AB,并且B中至少有一個元素不屬于集合A,那么集合A叫作集合B的真子集,記作AB或BA. AB的Venn圖為 兩集合相等:如果集合A中的每一個元素都是集合B中的元素,即AB,反過來,集合B的每一個元素也都是集合A 中的元素,即BA,那么就說集合A等于集合B,記作A=B. A=B的Venn圖為 思考:設(shè)A,B是兩個集合,AB,AB,A=B三者之間的關(guān)系是怎樣的? 5. 子集、真子集的有關(guān)性質(zhì) 由子集、真子集的定義可推知: (1)對于集合A,B,C,如果AB,BC,那么AC. (2

6、)對于集合A,B,C,如果AB,BC,那么AC. (3)AA. (4)空集是任何非空集合的真子集. 三、解釋應用 [例 題] 1. 用適當?shù)姆枺ā?,,=,,)填空? (1)3 ___________ {1,2,3}. (2)5 ___________ {5}. (3)4 ___________ {5}. (4){a} ___________ {a,b,c}. (5)0 ___________ . (6){a,b,c} ___________ {b,c}. (7) ___________ {0}. (8) ___________ {}. (9){1,2} _____

7、______ {2,1}. (10)G={x|x是能被3整除的數(shù)} ___________ H={x|x是能被6整除的數(shù)}. 2. 寫出集合{a,b}的所有子集,并指出其中哪些是它的真子集. 3. 說出下列每對集合之間的關(guān)系. (1)A={1,2,3,4,},B={3,4}. (2)P={x|x2=1},Q={-1,1}. (3)N,N*. (4)C={x∈R|x2=-1},D={0}. [練 習] 1. 用適當?shù)姆枺ā?,,=,,)填空? (1)a ___________ {a}. (2)b ___________ {a}. (3) ___________ {1,2}

8、. (4){a,b} ___________ {b,a}. (5)A={1,2,4} ___________ B={x|x是8的正約數(shù)}. 2. 求下列集合之間的關(guān)系,并用Venn圖表示. A={x|x是平行四邊形}, B={x|x是菱形}, C={x|x是矩形}, D={x|x是正方形}. 拓展延伸 填 表  表2-1 集 合 集合中元素的個數(shù) 子集的個數(shù) 真子集的個數(shù) {a} 1 ? ? {a,b} 2 ? ? {a,b,c} 3 ? ? {a,b,c,d} 4 ? ? … … ? ? (1)你能找出“集合中元素的個數(shù)”

9、與“子集的個數(shù)”、“真子集的個數(shù)”之間關(guān)系嗎? (2)如果一個集合中有n個元素,你能寫出計算它的所有子集個數(shù)與真子集個數(shù)的公式嗎?(用n表達) 點 評 這篇案例結(jié)構(gòu)嚴謹,思路清晰,概念和關(guān)系的引出注重從具體到抽象、從特殊到一般、從感性到理性的認識過程.具體地說就是,先結(jié)合實例研究兩個具體集合的關(guān)系,從而引出子集的定義,然后再結(jié)合實例說明AB,包括AB,A=B兩種情況,再給出真子集、等集的定義.這樣的處理方式,符合學生的認知規(guī)律,符合新課程的理念,例題與練習由淺入深,注重數(shù)形結(jié)合,使學生從不同角度加深了對集合之間的關(guān)系的理解.拓展延伸注重培養(yǎng)學生從特殊到一般地解決數(shù)學問題的能力.值得注意的是,在引出子集定義時,最好明確指出,集合之間的“大小”關(guān)系實質(zhì)上就是包含關(guān)系.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!