影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題十七 坐標(biāo)系與參數(shù)方程(含解析選修4-4)

上傳人:xt****7 文檔編號:105174385 上傳時間:2022-06-11 格式:DOC 頁數(shù):4 大?。?2.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題十七 坐標(biāo)系與參數(shù)方程(含解析選修4-4)_第1頁
第1頁 / 共4頁
2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題十七 坐標(biāo)系與參數(shù)方程(含解析選修4-4)_第2頁
第2頁 / 共4頁
2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題十七 坐標(biāo)系與參數(shù)方程(含解析選修4-4)_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題十七 坐標(biāo)系與參數(shù)方程(含解析選修4-4)》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題十七 坐標(biāo)系與參數(shù)方程(含解析選修4-4)(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題十七 坐標(biāo)系與參數(shù)方程(含解析,選修4-4) 抓住1個高考重點 重點1 坐標(biāo)系與參數(shù)方程 1.極坐標(biāo)和直角坐標(biāo)互化的前提條件是: (1)極點與直角坐標(biāo)系的原點重合; (2)極軸與直角坐標(biāo)系的軸正半軸重合; (3)兩種坐標(biāo)系取相同的長度單位.設(shè)點的直角坐標(biāo)為,它的極坐標(biāo)為,則互化公式是或;若把直角坐標(biāo)化為極坐標(biāo),求極角時,應(yīng)注意判斷點所在的象限(即角的終邊的位置),以便正確地求出角,在轉(zhuǎn)化過程中注意不要漏解,特別是在填空題和解答題中,則更要謹(jǐn)防漏解. 2.消去參數(shù)是參數(shù)方程化為普通方程的根本途徑,常用方法有代入消元法(包括集團代人法)、加減消

2、元法、參數(shù)轉(zhuǎn)化法和三角代換法等,轉(zhuǎn)化的過程中要注意參數(shù)方程中含有的限制條件,在普通方程中應(yīng)加上這種限制條件才能保持其等價性. 3.參數(shù)方程的用途主要有以下幾個方面: (1)求動點的軌跡,如果的關(guān)系不好找,我們引入?yún)⒆兞亢?,很容易找到與和與的等量關(guān)系式,消去參變量后即得動點軌跡方程.此時參數(shù)方程在求動點軌跡方程中起橋梁作用. (2)可以用曲線的參數(shù)方程表示曲線上一點的坐標(biāo),這樣把二元問題化為一元問題來解決,這也是圓錐曲線的參數(shù)方程的主要功能. (3)有些曲線參數(shù)方程的參變量有幾何意義.若能利用參變量的幾何意義解題,常會取得意想不到的效果.如利用直線標(biāo)準(zhǔn)參數(shù)方程中的幾何意義解題,會使難題化

3、易、繁題化簡. [高考常考角度] 角度1 若曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸正半軸建立直角坐標(biāo)系,則該曲線的直角坐標(biāo)方程為 . 解析:關(guān)鍵是記住兩點:1、,2、即可. 由已知為所求. 角度2在極坐標(biāo)系中,點 到圓的圓心的距離為( ) A. 2 B. C. D. 解析:極坐標(biāo)化為直角坐標(biāo)為,即.圓的極坐標(biāo)方程可化為,化為直角坐標(biāo)方程為,即,所以圓心坐標(biāo)為(1,0),則由兩點間距離公式.故選D. 角度3 已知兩曲線參數(shù)方程分別為和,它們的交點坐標(biāo)為

4、 . 解:表示橢圓,表示拋物線 聯(lián)立得或(舍去), 又因為,所以它們的交點坐標(biāo)為 角度4 直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點分別在曲線:(為參數(shù))和曲線:上,則的最小值為 . 點評:利用化歸思想和數(shù)形結(jié)合法,把兩條曲線轉(zhuǎn)化為直角坐標(biāo)系下的方程. 解析:曲線的方程是,曲線的方程是,兩圓外離,所以的最小值為. 角度5 在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線l:與,各有一個交點.當(dāng)時,這兩個交點間的距離為2,當(dāng)=

5、時,這兩個交點重合. (Ⅰ)分別說明是什么曲線,并求出a與b的值; (Ⅱ)設(shè)當(dāng)=時,l與的交點分別為,當(dāng)=時,l與的交點為,求四邊形的面積. 解析:(Ⅰ)的普通方程分別為和,故是圓,是橢圓. 當(dāng)時,射線l與交點的直角坐標(biāo)分別為,因為這兩點間的距離為2,所以. 當(dāng)時,射線l與交點的直角坐標(biāo)分別為,因為這兩點重合,所以. (Ⅱ)的普通方程分別為和 當(dāng)時,射線l與交點A1的橫坐標(biāo)為,與交點B1的橫坐標(biāo)為 當(dāng)時,射線l與的兩個交點分別與關(guān)于x軸對稱,因此,四邊形為梯形. 故四邊形的面積為 規(guī)避2個易失分點 易失分點1 參數(shù)的幾何意義不明

6、典例 已知直線的參數(shù)方程為(為參數(shù)),若以平面直角坐標(biāo)系中的點為極點,方向為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為 (1)求直線的傾斜角; (2)若直線與曲線交于兩點,求. 易失分提示:對直線參數(shù)方程中參數(shù)的幾何意義不明確導(dǎo)致錯誤. 解析:(1)直線的參數(shù)方程可以化為,根據(jù)直線參數(shù)方程的意義,直線經(jīng)過點,傾斜角為. (2)的直角坐標(biāo)方程為,即 曲線的直角坐標(biāo)方程為, 所以圓心到直線的距離 所以 易失分點2 極坐標(biāo)表達(dá)不準(zhǔn) 典例 已知曲線的極坐標(biāo)方程分別為則曲線與交點的極坐標(biāo)為_________________ 易失分提示: 本題

7、考查曲線交點的求法,易錯解為:由方程組 即兩曲線的交點為或 正解解析:由方程組或 即兩曲線的交點為或 在極坐標(biāo)系中,有序?qū)崝?shù)對的集合與平面內(nèi)的點集不是一一對應(yīng)的.給出一個有序數(shù)對,在極坐標(biāo)系中可以唯一確定一個點,但極坐標(biāo)系中的一點,它的極坐標(biāo)不是唯一的,若點不是極點,是它的一個掇坐標(biāo),那么有無窮多個極坐標(biāo)與 各類題型展現(xiàn): 1. (本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程 在平面直角坐標(biāo)系中,橢圓方程為為參數(shù)) (1)求過橢圓的右焦點,且與直線為參數(shù))平行的直線的普通方程. (2)求橢圓的內(nèi)接矩形面積的最大值。 解析:(1)由已知得橢圓的普通方程為,右焦點為,

8、直線的普通方程為,所以,于是所求直線方程為即. (2),?當(dāng)時,面積最大為30. 2. (本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程 在極坐標(biāo)系中,已知圓的圓心,半徑. (Ⅰ)求圓的極坐標(biāo)方程; (Ⅱ)若,直線的參數(shù)方程為(為參數(shù)),直線交圓于兩點,求弦長的取值范圍. 解析:(Ⅰ)方法一:∵圓心的直角坐標(biāo)為,∴圓的直角坐標(biāo)方程為. 化為極坐標(biāo)方程是. 方法二:如圖,設(shè)圓上任意一點,則 化簡得.........4分 (Ⅱ)將代入圓的直角坐標(biāo)方程, 得 即 所以 . 故, ∵,∴ , 即弦長的取值范圍是...............

9、...10分 3. (本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程 已知直線的參數(shù)方程是(是參數(shù)),圓的極坐標(biāo)方程為. (Ⅰ)求圓心的直角坐標(biāo); (Ⅱ)由直線上的點向圓引切線,求切線長的最小值。 解析:(Ⅰ)由 得 圓的直角坐標(biāo)方程為 即, 所以 圓心的直角坐標(biāo)為 (Ⅱ)由直線上的點向圓引切線,切線長為 所以,當(dāng)時,切線長的最小值為 4.選修4-4:坐標(biāo)系與參數(shù)方程 在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知直線上兩點的極坐標(biāo)分別為,圓的參數(shù)方程為參數(shù)) (Ⅰ)設(shè)為線段的中點,求直線的平面直角坐標(biāo)方程; (Ⅱ)判斷直線與圓

10、的位置關(guān)系。 解析:(Ⅰ)由題意知,的直角坐標(biāo)為,,因為是線段中點,則 因此直角坐標(biāo)方程為 (Ⅱ)因為直線上兩點, ∴的方程為:即,又圓心,半徑. 所以,故直線和圓相交. 5.(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程 在直角坐標(biāo)系中,圓,圓 (1)在以為極點,軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓的極坐標(biāo)方程,并求出圓的交點坐標(biāo)(用極坐標(biāo)表示) (2)求圓與圓的公共弦的參數(shù)方程 解析:圓的極坐標(biāo)方程為,圓的極坐標(biāo)方程為,解 得, 故圓與圓交點的坐標(biāo)為 ……5分 注:極坐標(biāo)系下點的表示不唯一 (2)(解法一)由,得圓與圓交點的直角坐標(biāo)為 故圓與圓的公共弦的參數(shù)方程為 (為參數(shù)) (或參數(shù)方程寫成) … 10分 (解法二)將代入,得,從而 于是圓與圓的公共弦的參數(shù)方程為 … 10分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!