影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高三數學總復習 平面向量的正交分解與坐標運算教案 理

上傳人:xt****7 文檔編號:105192640 上傳時間:2022-06-11 格式:DOC 頁數:6 大?。?0.52KB
收藏 版權申訴 舉報 下載
2022年高三數學總復習 平面向量的正交分解與坐標運算教案 理_第1頁
第1頁 / 共6頁
2022年高三數學總復習 平面向量的正交分解與坐標運算教案 理_第2頁
第2頁 / 共6頁
2022年高三數學總復習 平面向量的正交分解與坐標運算教案 理_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數學總復習 平面向量的正交分解與坐標運算教案 理》由會員分享,可在線閱讀,更多相關《2022年高三數學總復習 平面向量的正交分解與坐標運算教案 理(6頁珍藏版)》請在裝配圖網上搜索。

1、2022年高三數學總復習 平面向量的正交分解與坐標運算教案 理 教材分析 這節(jié)課通過建立直角坐標系,結合平面向量基本定理,給出了向量的另一種表示———坐標表示,這樣使平面中的向量與它的坐標建立起了一一對應關系,然后導出了向量的加法、減法及實數與向量的積的坐標運算,這就為利用“數”的運算處理“形”的問題搭起了橋梁,更突出也更簡化了向量的應用.所以,一定要讓學生重點掌握向量的坐標運算,以利于掌握坐標形式下的向量的一些關系式及運用.教學難點是讓學生建立起平面向量的坐標概念. 教學目標 1. 理解平面向量坐標概念,領會它的引入過程,進一步體會一一對應的思想意識. 2. 理解平面向量的坐標的概

2、念,掌握平面向量的坐標運算,并能應用坐標運算解決一些問題. 3. 增強數形結合意識,領會“沒有運算,向量只是一個‘路標’,因為有了運算,向量的力量無限”的說法. 任務分析 1. 有了平面向量的基本定理,就不難有平面向量的正交分解,有了坐標系下點與坐標的一一對應關系,也就容易有在直角坐標平面內的向量與坐標的一一對應. 2. 可以從兩個角度來理解平面向量的坐標表示: (1)設i,j為x,y軸方向上的單位向量,則任一向量a可唯一地表示為xi+yj,即唯一對應數對(x,y),所以可以說a=(x,y). (2)任一向量a可平移成,一一對應點A(x,y),從而可說a=(x,y). 3. 在接

3、觸過xOy平面內一點到它的坐標的這種形、數過渡的基礎上,容易接受由向量到坐標的這種代數化的過渡. 教學設計 一、問題情景 1. 光滑斜面上的木塊所受重力可以分解為平行斜面使木塊下滑的力F1和木塊產生的垂直于斜面的壓力F2(如圖). 一個向量也可以分解為兩個互相垂直的向量的線性表達,這種情形叫向量的正交分解.以后可以看到,在正交分解下,許多有關向量問題將變得較為簡單. 2. 在平面直角坐標系中,每一個點可用一對有序實數(即它的坐標)表示,那么對平面直角坐標內的每一個向量,可否用實數對來表示?又如何表示呢? 二、建立模型 1. 如圖,在直角坐標系中,先分別取與x軸、y軸方向相同的

4、兩個單位向量i,j作為基底.對于平面上一個向量a,由平面向量的基本定理,知有且只有一對實數x,y使a=xi+yj,這樣平面內任一向量a都可由x,y唯一確定,(x,y)叫a的坐標,記作a=(x,y). 顯然,i=(1,0),j=(0,1),0=(0,0). 若把a的起點平移到坐標原點,即a=,則點A的位置由a唯一確定.設=xi+yj,則的坐標就是點A的坐標;反過來,點A的坐標(x,y)也就是的坐標.因此,在平面直角坐標系內,每一個平面向量都可以用一對實數(即坐標)唯一表示. 2. 學生思考討論 已知a=(x1,y1),b=(x2,y2),你能得出a+b,a-b,λa的坐標嗎? ∵a

5、=(x1,y1),b=(x2,y2), ∴a=x1i+y1j,b=x2i+y2j. ∴a+b=(x1+x2)i+(y1+y2)j, ∴a+b=(x1+x2,y1+y2). 同理a+b=(x1-x2,y1-y2),λa=(λx1,λy1). 上述結論可表述為:兩個向量和(差)的坐標分別等于這兩個向量相應坐標的和(差);實數與向量的積的坐標等于用這個實數乘原來向量的相應坐標. 三、解釋應用 [例 題] 1. 已知A(x1,y1),B(x2,y2),求AB→的坐標. 解:如圖39-3,AB→=-=(x2,y2)-(x1,y1)=(x2-x1,y2-y1). 總結:一個向量的坐

6、標等于表示此向量的有向線段的終點的坐標減去始點坐標. 思考:能在圖中標出坐標為(x2-x1,y2-y1)的P點嗎? 平移到,則P(x2-x1,y2-y1). 2. 已知A(-2,1),B(-1,3),C(3,4). (1)求-的坐標. ?。?)求ABCD中D點的坐標. 放開思考,展開討論,看學生們有哪些不同方法. (1)解法1:∵=(1,2),=(5,3), ∴-=(1,2)-(5,3)=(-4,-1). 解法2:-==(-4,-1). (2)解法1:設D(x,y),=,即(1,2)=(3-x,4-y), ∴x=y=2,D(2,2). 思考:你能比較出對(2)的兩種解

7、法在思想方法上的異同點嗎? (解法1是間接的思想,即方程的思想,解法2是直接的思想) 3. 在直角坐標系xOy中,已知點A(3,2),點B(-2,4),求向量+的方向和長度. 解:由已知,得=(3,2),=(-2,4). 設=+,則=+=(3,2)+(-2,4)=(1,6). 由兩點的距離公式,得 設相對x軸正向的轉角為α,則 查表或使用計算器,得α=80°32′. 答:向量的方向偏離x軸正向約為80°32′,長度等于,向量的方向偏離x軸正向約為116°34′,長度等于2. [練 習] 1. 已知a=(2,1),b=(-3,4),求3a+4b的坐標. 2. 設a+

8、b=(-4,-3),a-b=(2,1),求a,b. 解法1:∵2a=(-4,-3)+(2,1)=(-2,-2), 2b=(-4,-3)-(2,1)=(-6,-4), ∴a=(-1,-1),b=(-3,-2). 解法2:設a=(x1,y1),b=(x2,y2),則 3. 已知a=(1,1),b=(1,-1),c=(-1,2),試以a,b為基底來表示c. 解:設c=k1a+k2a,即(-1,2)=k1(1,1)+k2(1,-1),即(-1,2)=(k1+k2,k1-k2), 四、拓展延伸 1. 在直角坐標系xOy中,已知A(x1,y1),B(x2,y2),求線段AB中點的坐

9、標. 解:設點M(x,y)是線段AB的中點(如圖39-5),則=(+). 將上式換為向量的坐標,得 (x,y)=[(x1,y1 )+(x2,y2 )]. 即. 這里得到的公式叫作線段中點的坐標計算公式,簡稱中點公式. 2. 對于向量a,b,c,若存在不全為0的實數k1,k2,k3,使k1a+k2b+k3c=0,則稱a,b,c三個向量線性相關,試研究三個向量=(3,5),=(0,-1),=(-3,-4)是否線性相關. 解法1:顯然有++=0,∴三者線性相關. 解法2:由k1+k2+k3=0, 即k1(3,5)+k2(0,-1)+k3(-3,-4)=0, 即(3k1-3k3,5k1-k2-4k3)=(0,0), 取k1=k2=k3=1,則++=0,故三個向量線性相關. 點 評 這篇案例設計完整,思路自然.由斜邊上物體所受重力的分解,聯想到向量應有常見的正交分解;由點的坐標表示,結合平面向量基本定理聯想到向量也有坐標形式.這為鍛煉學生的類比聯想能力,增強數學地提出問題、解決問題的能力提供了平臺.向量用坐標表示即把向量代數化,增強了學生數形結合的意識,也增強了一一對應的意識,為提高學生的數學素質打下了良好的基礎.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!