影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高中數(shù)學(xué) 第二章《曲線與方程》教案 新人教A版選修2-1

上傳人:xt****7 文檔編號:105216524 上傳時(shí)間:2022-06-11 格式:DOC 頁數(shù):6 大?。?7.52KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高中數(shù)學(xué) 第二章《曲線與方程》教案 新人教A版選修2-1_第1頁
第1頁 / 共6頁
2022年高中數(shù)學(xué) 第二章《曲線與方程》教案 新人教A版選修2-1_第2頁
第2頁 / 共6頁
2022年高中數(shù)學(xué) 第二章《曲線與方程》教案 新人教A版選修2-1_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高中數(shù)學(xué) 第二章《曲線與方程》教案 新人教A版選修2-1》由會員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第二章《曲線與方程》教案 新人教A版選修2-1(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高中數(shù)學(xué) 第二章《曲線與方程》教案 新人教A版選修2-1 一、教學(xué)目標(biāo) (一)知識教學(xué)點(diǎn) 使學(xué)生掌握常用動點(diǎn)的軌跡以及求動點(diǎn)軌跡方程的常用技巧與方法.(二)能力訓(xùn)練點(diǎn) 通過對求軌跡方程的常用技巧與方法的歸納和介紹,培養(yǎng)學(xué)生綜合運(yùn)用各方面知識的能力. (三)學(xué)科滲透點(diǎn) 通過對求軌跡方程的常用技巧與方法的介紹,使學(xué)生掌握常用動點(diǎn)的軌跡,為學(xué)習(xí)物理等學(xué)科打下扎實(shí)的基礎(chǔ). 二、教材分析 1.重點(diǎn):求動點(diǎn)的軌跡方程的常用技巧與方法. (解決辦法:對每種方法用例題加以說明,使學(xué)生掌握這種方法.)2.難點(diǎn):作相關(guān)點(diǎn)法求動點(diǎn)的軌跡方法. (解決辦法:先使學(xué)生了解相關(guān)點(diǎn)法的思路,再

2、用例題進(jìn)行講解.) 教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。 教學(xué)設(shè)想:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神. 三、教學(xué)過程 學(xué)生探究過程: (一)復(fù)習(xí)引入 大家知道,平面解析幾何研究的主要問題是: (1)根據(jù)已知條件,求出表示平面曲線的方程; (2)通過方程,研究平面曲線的性質(zhì). 我們已經(jīng)對常見曲線圓、橢圓、雙曲線以及拋物線進(jìn)行過這兩個方面的研究,今天在上面已經(jīng)研究的基礎(chǔ)上來對根據(jù)已知條件求曲線的軌跡方程的常見技巧與方法進(jìn)行系統(tǒng)分析. (二)幾種常見求軌跡方程的方法 1.直接法 由題設(shè)所給(或通過分析圖形的幾何性質(zhì)而得出)的動點(diǎn)所滿足的

3、幾何條件列出等式,再用坐標(biāo)代替這等式,化簡得曲線的方程,這種方法叫直接法. 例1(1)求和定圓x2+y2=k2的圓周的距離等于k的動點(diǎn)P的軌跡方程; (2)過點(diǎn)A(a,o)作圓O∶x2+y2=R2(a>R>o)的割線,求割線被圓O截得弦的中點(diǎn)的軌跡. 對(1)分析: 動點(diǎn)P的軌跡是不知道的,不能考查其幾何特征,但是給出了動點(diǎn)P的運(yùn)動規(guī)律:|OP|=2R或|OP|=0. 解:設(shè)動點(diǎn)P(x,y),則有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求動點(diǎn)P的軌跡方程為x2+y2=4R2或x2+y2=0. 對(2)分析: 題設(shè)中沒有具體給出動點(diǎn)所滿足的幾

4、何條件,但可以通過分析圖形的幾何性質(zhì)而得出,即圓心與弦的中點(diǎn)連線垂直于弦,它們的斜率互為負(fù)倒數(shù).由學(xué)生演板完成,解答為: 設(shè)弦的中點(diǎn)為M(x,y),連結(jié)OM, 則OM⊥AM. ∵kOM·kAM=-1, 其軌跡是以O(shè)A為直徑的圓在圓O內(nèi)的一段弧(不含端點(diǎn)). 2.定義法 利用所學(xué)過的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動點(diǎn)的軌跡方程,這種方法叫做定義法.這種方法要求題設(shè)中有定點(diǎn)與定直線及兩定點(diǎn)距離之和或差為定值的條件,或利用平面幾何知識分析得出這些條件. 直平分線l交半徑OQ于點(diǎn)P(見圖2-45),當(dāng)Q點(diǎn)在圓周上運(yùn)動時(shí),求點(diǎn)P的軌跡方程. 分

5、析: ∵點(diǎn)P在AQ的垂直平分線上, ∴|PQ|=|PA|. 又P在半徑OQ上. ∴|PO|+|PQ|=R,即|PO|+|PA|=R. 故P點(diǎn)到兩定點(diǎn)距離之和是定值,可用橢圓定義 寫出P點(diǎn)的軌跡方程. 解:連接PA ∵l⊥PQ,∴|PA|=|PQ|. 又P在半徑OQ上. ∴|PO|+|PQ|=2. 由橢圓定義可知:P點(diǎn)軌跡是以O(shè)、A為焦點(diǎn)的橢圓. 3.相關(guān)點(diǎn)法 若動點(diǎn)P(x,y)隨已知曲線上的點(diǎn)Q(x0,y0)的變動而變動,且x0、y0可用x、y表示,則將Q點(diǎn)坐標(biāo)表達(dá)式代入已知曲線方程,即得點(diǎn)P的軌跡方程.這種方法稱為相關(guān)點(diǎn)法(或代換法). 例3  已知拋物線y

6、2=x+1,定點(diǎn)A(3,1)、B為拋物線上任意一點(diǎn),點(diǎn)P在線段AB上,且有BP∶PA=1∶2,當(dāng)B點(diǎn)在拋物線上變動時(shí),求點(diǎn)P的軌跡方程. 分析: P點(diǎn)運(yùn)動的原因是B點(diǎn)在拋物線上運(yùn)動,因此B可作為相關(guān)點(diǎn),應(yīng)先找出點(diǎn)P與點(diǎn)B的聯(lián)系. 解:設(shè)點(diǎn)P(x,y),且設(shè)點(diǎn)B(x0,y0) ∵BP∶PA=1∶2,且P為線段AB的內(nèi)分點(diǎn). 4.待定系數(shù)法 求圓、橢圓、雙曲線以及拋物線的方程常用待定系數(shù)法求. 例4  已知拋物線y2=4x和以坐標(biāo)軸為對稱軸、實(shí)軸在y軸上的雙曲 曲線方程. 分析: 因?yàn)殡p曲線以坐標(biāo)軸為對稱軸,實(shí)軸在y軸上,所以可設(shè)雙曲線方 ax2-

7、4b2x+a2b2=0 ∵拋物線和雙曲線僅有兩個公共點(diǎn),根據(jù)它們的對稱性,這兩個點(diǎn)的橫坐標(biāo)應(yīng)相等,因此方程ax2-4b2x+a2b2=0應(yīng)有等根. ∴△=1664-4Q4b2=0,即a2=2b. (以下由學(xué)生完成) 由弦長公式得: 即a2b2=4b2-a2. (三)鞏固練習(xí) 用十多分鐘時(shí)間作一個小測驗(yàn),檢查一下教學(xué)效果.練習(xí)題用一小黑板給出. 1.△ABC一邊的兩個端點(diǎn)是B(0,6)和C(0,-6),另兩邊斜率的 2.點(diǎn)P與一定點(diǎn)F(2,0)的距離和它到一定直線x=8的距離的比是1∶2,求點(diǎn)P的軌跡方程,并說明軌跡是什么圖形? 3.求拋物線y2=2px(p>

8、0)上各點(diǎn)與焦點(diǎn)連線的中點(diǎn)的軌跡方程. 答案: 義法) 由中點(diǎn)坐標(biāo)公式得: (四)、教學(xué)反思 求曲線的軌跡方程一般地有直接法、定義法、相關(guān)點(diǎn)法、待定系數(shù)法,還有參數(shù)法、復(fù)數(shù)法也是求曲線的軌跡方程的常見方法,這等到講了參數(shù)方程、復(fù)數(shù)以后再作介紹. 五、布置作業(yè) 1.兩定點(diǎn)的距離為6,點(diǎn)M到這兩個定點(diǎn)的距離的平方和為26,求點(diǎn)M的軌跡方程. 2.動點(diǎn)P到點(diǎn)F1(1,0)的距離比它到F2(3,0)的距離少2,求P點(diǎn)的軌跡. 3.已知圓x2+y2=4上有定點(diǎn)A(2,0),過定點(diǎn)A作弦AB,并延長到點(diǎn)P,使3|AB|=2|AB|,求動點(diǎn)P的軌跡方程.作業(yè)答案: 1.以兩定點(diǎn)A、B所在直線為x軸,線段AB的垂直平分線為y軸建立直角坐標(biāo)系,得點(diǎn)M的軌跡方程x2+y2=4 2.∵|PF2|-|PF|=2,且|F1F2|∴P點(diǎn)只能在x軸上且x<1,軌跡是一條射線 六、板書設(shè)計(jì)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!