《2022年高中數(shù)學(xué) 第3章 2第1課時(shí) 實(shí)際問題中導(dǎo)數(shù)的意義課時(shí)作業(yè) 北師大版選修2-2》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第3章 2第1課時(shí) 實(shí)際問題中導(dǎo)數(shù)的意義課時(shí)作業(yè) 北師大版選修2-2(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中數(shù)學(xué) 第3章 2第1課時(shí) 實(shí)際問題中導(dǎo)數(shù)的意義課時(shí)作業(yè) 北師大版選修2-2
一、選擇題
1.某人拉動(dòng)一個(gè)物體前進(jìn),他所做的功W是時(shí)間t的函數(shù)W=W(t),則W′(t0)表示( )
A.t=t0時(shí)做的功 B.t=t0時(shí)的速度
C.t=t0時(shí)的位移 D.t=t0時(shí)的功率
[答案] D
[解析] W′(t)表示t時(shí)刻的功率.
2.一個(gè)物體的運(yùn)動(dòng)方程為s=1-t+t2,(s的單位是s,t的單位是s),那么物體在3 s末的瞬時(shí)速度是( )
A.7米/秒 B.6米/秒
C.5米/秒 D.8米/秒
[答案] C
[解析] s′(t)=2t-1,
∴s′(3)
2、=2×3-1=5.
3.如果質(zhì)點(diǎn)A按規(guī)律s=3t2運(yùn)動(dòng),則在t=3時(shí)的瞬時(shí)速度為( )
A.6 B.18
C.54 D.81
[答案] B
[解析] 瞬時(shí)速度v= = =3(6+Δt)=18.
4.如圖,設(shè)有定圓C和定點(diǎn)O,當(dāng)l從l0開始在平面上繞O勻速旋轉(zhuǎn)(旋轉(zhuǎn)角度不超過90°)時(shí),它掃過的圓內(nèi)陰影部分的面積S是時(shí)間t的函數(shù),它的圖像大致是( )
[答案] D
[解析] 由于是勻速旋轉(zhuǎn),所以陰影部分的面積在開始和最后時(shí)段緩慢增加,而中間時(shí)段相對增速較快.
選項(xiàng)A表示面積的增速是常數(shù),與實(shí)際不符;
選項(xiàng)B表示最后時(shí)段面積的增速較快,也與實(shí)際不符;
3、
選項(xiàng)C表示開始時(shí)段和最后時(shí)段面積的增速比中間時(shí)段快,與實(shí)際不符;
選項(xiàng)D表示開始和最后時(shí)段面積的增速緩慢,中間時(shí)段增速較快.符合實(shí)際.
[點(diǎn)評] 函數(shù)變化的快慢可通過函數(shù)的導(dǎo)數(shù)體現(xiàn)出來,導(dǎo)數(shù)的絕對值越大,函數(shù)變化越快,函數(shù)圖像就比較“陡峭”,反之,函數(shù)圖像就“平緩”一些.
5.設(shè)一輛轎車在公路上做加速直線運(yùn)動(dòng),假設(shè)速度v(單位:m/s)與時(shí)間t(單位:s)的函數(shù)關(guān)系為v=v(t)=t3+3t,則t=t0s時(shí)轎車的加速度為( )m/s2
A.t+3t0 B.3t+3
C.3t+3t0 D.t+3
[答案] B
[解析] ∵v′(t)=3t2+3,
則當(dāng)t=t0s時(shí)的速度變
4、化率為v′(t0)=3t+3(m/s2).
即t=t0s時(shí)轎車的加速度為(3t+3)m/s2.
[點(diǎn)評] 運(yùn)動(dòng)方程s=s(t)的導(dǎo)數(shù)表示的是t時(shí)刻時(shí)的瞬時(shí)速度,速度方程v=v(t)的導(dǎo)數(shù)表示的是t時(shí)刻時(shí)的加速度.
二、填空題
6.人體血液中藥物的質(zhì)量濃度c=f(t)(單位:mg/mL)隨時(shí)間t(單位:min)變化,若f′(2)=0.3,則f′(2)表示________.
[答案] 服藥后2分鐘時(shí)血液中藥物的質(zhì)量濃度以每分鐘0.3mg/mL的速度增加.
7.假設(shè)某國家在20年間的平均通貨膨脹率為5%,物價(jià)p(單位:元)與時(shí)間t(單位:年)有如下函數(shù)關(guān)系:p(t)=p0(1+5%)t,
5、其中p0為t=0時(shí)的物價(jià).假定某種商品的p0=1,那么在第10個(gè)年頭,這種商品價(jià)格上漲的速度大約是________元/年(精確到0.01).
[答案] 0.08
[解析] 因?yàn)閜0=1,所以p(t)=(1+5%)t=1.05t,在第10個(gè)年頭,這種商品價(jià)格上漲的速度,即為函數(shù)的導(dǎo)函數(shù)在t=10時(shí)的函數(shù)值.
因?yàn)閜′(t)=(1.05t)′=1.05t·ln1.05,
所以p′(10)=1.0510×ln1.05≈0.08(元/年).
因此,在第10個(gè)年頭,這種商品的價(jià)格約以0.08元/年的速度上漲.
8.設(shè)底為正三角形的直棱柱的體積為V,那么其表面積最小時(shí),底面邊長為_______
6、_.
[答案]
[解析] 設(shè)底面邊長為x,側(cè)棱長為l,則V=x2·sin60°·l,
∴l(xiāng)=.∴S表=2S底+3S側(cè)=x2·sin60°+3·x·l=x2+.
令S表′=x-=0
∴x3=4V,即x=,又當(dāng)x∈(0,)時(shí),S表′<0;當(dāng)x∈(,V)時(shí),S表′>0
∴當(dāng)x=時(shí),表面積最?。?
三、解答題
9.甲、乙二人跑步的路程與時(shí)間的關(guān)系及百米賽跑路程和時(shí)間的關(guān)系分別如圖①②,試問:
(1)甲、乙二人哪一個(gè)跑得快?
(2)甲、乙二人百米賽跑,問快到終點(diǎn)時(shí)誰跑得較快?
[分析] 用路程與時(shí)間的關(guān)系以及導(dǎo)數(shù)的幾何意義來比較甲、乙二人誰跑得快.
[解析] 從圖①可以看出在
7、相同的時(shí)刻t,乙跑的路程要比甲跑的路程遠(yuǎn),所以乙跑得快.
從圖②可以看出甲是勻速跑的,而乙快到終點(diǎn)時(shí),變化率越來越大,即速度越來越快,所以快到終點(diǎn)時(shí)乙跑得較快.
10.某機(jī)械廠生產(chǎn)某種機(jī)器配件的最大生產(chǎn)能力為每日100件,假設(shè)日產(chǎn)品的總成本C(元)與日產(chǎn)量x(件)的函數(shù)關(guān)系式為C(x)=x2+60x+2 050.求:
(1)日產(chǎn)量75件時(shí)的總成本和平均成本;
(2)當(dāng)日產(chǎn)量由75件提高到90件,總成本的平均改變量;
(3)當(dāng)日產(chǎn)量為75件時(shí)的邊際成本.
[解析] (1)當(dāng)x=75時(shí),C(75)=×752+60×75+2 050=7 956.25(元),∴≈106.08(元/件).
8、
故日產(chǎn)量75件時(shí)的總成本和平均成本分別為7 956.25元,106.08元/件.
(2)當(dāng)日產(chǎn)量由75件提高到90件時(shí),總成本的平均改變量==101.25(元/件).
(3)當(dāng)日產(chǎn)量為75件時(shí)的邊際成本
∴C′(x)=x+60,
∴C′(75)=97.5(元).
一、選擇題
1.質(zhì)點(diǎn)運(yùn)動(dòng)的速度v(單位:m/s)是時(shí)間t(單位:s)的函數(shù),且v=v(t),則v′(1)表示( )
A.t=1s時(shí)的速度
B.t=1s時(shí)的加速度
C.t=1s時(shí)的位移
D.t=1s時(shí)的平均速度
[答案] B
[解析] v(t)的導(dǎo)數(shù)v′(t)表示t時(shí)刻的加速度.
2.某汽車啟動(dòng)階段的路
9、程函數(shù)為s(t)=2t3-5t2(t表示時(shí)間),則t=2時(shí),汽車的加速度是( )
A.14 B.4
C.10 D.6
[答案] A
[解析] 速度v(t)=s′(t)=6t2-10t.
所以加速度a(t)=v′(t)=12t-10,當(dāng)t=2時(shí),a(t)=14,即t=2時(shí)汽車的加速度為14.
3.下列四個(gè)命題:
①曲線y=x3在原點(diǎn)處沒有切線;
②若函數(shù)f(x)=,則f′(0)=0;
③加速度是動(dòng)點(diǎn)位移函數(shù)s(t)對時(shí)間t的導(dǎo)數(shù);
④函數(shù)y=x5的導(dǎo)函數(shù)的值恒非負(fù).
其中真命題的個(gè)數(shù)為( )
A.1 B.2
C.3 D.4
[答案] A
[解析]
10、①中y′=3x2,x=0時(shí),y′=0,∴y=x3在原點(diǎn)處的切線為y=0;
②中f(x)在x=0處導(dǎo)數(shù)不存在;
③中s(t)對時(shí)間t的導(dǎo)數(shù)為瞬時(shí)速度;
④中y′=5x4≥0.
所以命題①②③為假命題,④為真命題.
4.設(shè)球的半徑為時(shí)間t的函數(shù)R(t).若球的體積以均勻速度C增長,則球的表面積的增長速度與球半徑( )
A.成正比,比例系數(shù)為C
B.成正比,比例系數(shù)為2C
C.成反比,比例系數(shù)為C
D.成反比,比例系數(shù)為2C
[答案] D
[解析] 本題主要考查導(dǎo)數(shù)的有關(guān)應(yīng)用.
根據(jù)題意,V=πR3(t),S=4πR2(t),
球的體積增長速度為V′=4πR2(t)·R
11、′(t)
球的表面積增長速度S′=2·4πR(t)·R′(t),
又∵球的體積以均勻速度C增長,
∴球的表面積的增長速度與球半徑成反比,比例系數(shù)為2C.
二、填空題
5.一質(zhì)點(diǎn)沿直線運(yùn)動(dòng),如果由始點(diǎn)起經(jīng)過t s后的位移為s=3t2+t,則速度v=10時(shí)的時(shí)刻t=________.
[答案]
[解析] s′=6t+1,則v(t)=6t+1,設(shè)6t+1=10,
則t=.
三、解答題
6.一杯80℃的熱紅茶置于20℃的房間里,它的溫度會(huì)逐漸下降.溫度T(單位:℃)與時(shí)間t(單位:min)間的關(guān)系,由函數(shù)T=f(t)給出.請問:
(1)f′(t)的符號(hào)是什么?為什么?
(
12、2)f′(3)=-4的實(shí)際意義是什么?如果f(3)=65℃,你能畫出函數(shù)在點(diǎn)t=3min時(shí)圖像的大致形狀嗎?
[解析] (1)f′(t)是負(fù)數(shù).因?yàn)閒′(t)表示溫度隨時(shí)間的變化率,而溫度是逐漸下降的,所以f′(t)為負(fù)數(shù).
(2)f′(3)=-4表明在3min附近時(shí),溫度約以4℃/min的速度下降,如圖所示.
7.當(dāng)銷售量為x,總利潤為L=L(x)時(shí),稱L′(x)為銷售量為x時(shí)的邊際利潤,它近似等于銷售量為x時(shí),再多銷售一個(gè)單位產(chǎn)品所增加或減少的利潤.
某糕點(diǎn)加工廠生產(chǎn)A類糕點(diǎn)的總成本函數(shù)和總收入函數(shù)分別是C(x)=100+2x+0.02x2,R(x)=7x+0.01x2.
求邊際
13、利潤函數(shù)和當(dāng)日產(chǎn)量分別是200 kg,250 kg和300 kg時(shí)的邊際利潤.
[解析] (1)總利潤函數(shù)為L(x)=R(x)-C(x)=5x-100-0.01x2,邊際利潤函數(shù)為L′(x)=5-0.02 x.
(2)當(dāng)日產(chǎn)量分別是200 kg、250 kg和300 kg時(shí)的邊際利潤分別是L′(200)=1(元),
L′(250)=0(元),L′(300)=-1(元).
8.現(xiàn)有一批貨物由海上從A地運(yùn)往B地,已知輪船的最大航行速度為35nmile/h,A地至B地之間的航行距離約為500nmile,每小時(shí)的運(yùn)輸成本由燃料費(fèi)用和其余費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)用與輪船速度的平方成正比(比例
14、系數(shù)為0.6),其余費(fèi)用為每小時(shí)960元.
(1)把全程運(yùn)輸成本y(元)表示為速度x(nmile/h)的函數(shù):y=f(x);
(2)求x從10變到20的平均運(yùn)輸成本;
(3)求f′(10)并解釋它的實(shí)際意義.
[解析] (1)依題意得y=(960+0.6x2)=+300x,函數(shù)的定義域?yàn)?