影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高中數(shù)學(xué) 第四講《數(shù)學(xué)歸納法證明不等式》教案(1) 新人教版選修4-5

上傳人:xt****7 文檔編號:105244097 上傳時間:2022-06-11 格式:DOC 頁數(shù):12 大?。?59.52KB
收藏 版權(quán)申訴 舉報 下載
2022年高中數(shù)學(xué) 第四講《數(shù)學(xué)歸納法證明不等式》教案(1) 新人教版選修4-5_第1頁
第1頁 / 共12頁
2022年高中數(shù)學(xué) 第四講《數(shù)學(xué)歸納法證明不等式》教案(1) 新人教版選修4-5_第2頁
第2頁 / 共12頁
2022年高中數(shù)學(xué) 第四講《數(shù)學(xué)歸納法證明不等式》教案(1) 新人教版選修4-5_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高中數(shù)學(xué) 第四講《數(shù)學(xué)歸納法證明不等式》教案(1) 新人教版選修4-5》由會員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第四講《數(shù)學(xué)歸納法證明不等式》教案(1) 新人教版選修4-5(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高中數(shù)學(xué) 第四講《數(shù)學(xué)歸納法證明不等式》教案(1) 新人教版選修4-5 數(shù)學(xué)歸納法證明不等式是高中選修的重點(diǎn)內(nèi)容之一,包含數(shù)學(xué)歸納法的定義和數(shù)學(xué)歸納法證明基本步驟,用數(shù)學(xué)歸納法證明不等式。數(shù)學(xué)歸納法是高考考查的重點(diǎn)內(nèi)容之一,在數(shù)列推理能力的考查中占有重要的地位。 本講主要復(fù)習(xí)數(shù)學(xué)歸納法的定義、數(shù)學(xué)歸納法證明基本步驟、用數(shù)學(xué)歸納法證明不等式的方法:作差比較法、作商比較法、綜合法、分析法和放縮法,以及類比與猜想、抽象與概括、從特殊到一般等數(shù)學(xué)思想方法。 在用數(shù)學(xué)歸納法證明不等式的具體過程中,要注意以下幾點(diǎn): (1)在從n=k到n=k+1的過程中,應(yīng)分析清楚不等式兩端(一般是左端)

2、項數(shù)的變化,也就是要認(rèn)清不等式的結(jié)構(gòu)特征; (2)瞄準(zhǔn)當(dāng)n=k+1時的遞推目標(biāo),有目的地進(jìn)行放縮、分析; (3)活用起點(diǎn)的位置; (4)有的試題需要先作等價變換。 例題精講 例1、用數(shù)學(xué)歸納法證明 分析:該命題意圖:本題主要考查數(shù)學(xué)歸納法定義,證明基本步驟 證明: 1°當(dāng)n=1時,左邊=1-=,右邊==,所以等式成立。 2°假設(shè)當(dāng)n=k時,等式成立, 即。 那么,當(dāng)n=k+1時, 這就是說,當(dāng)n=k+1時等式也成立。 綜上所述,等式對任何自然數(shù)n都成立。 點(diǎn)評: 數(shù)學(xué)歸納法是用于證明某些與自然數(shù)有關(guān)的命題的一種方法.設(shè)要證命題為P(n).(1)證明

3、當(dāng)n取第一個值n0時,結(jié)論正確,即驗證P(n0)正確;(2)假設(shè)n=k(k∈N且k≥n0)時結(jié)論正確,證明當(dāng)n=k+1時,結(jié)論也正確,即由P(k)正確推出P(k+1)正確,根據(jù)(1),(2),就可以判定命題P(n)對于從n0開始的所有自然數(shù)n都正確. 要證明的等式左邊共2n項,而右邊共n項。f(k)與f(k+1)相比較,左邊增加兩項,右邊增加一項,并且二者右邊的首項也不一樣,因此在證明中采取了將與合并的變形方式,這是在分析了f(k)與f(k+1)的差異和聯(lián)系之后找到的方法。 練習(xí): 1.用數(shù)學(xué)歸納法證明3k≥n3(n≥3,n∈N)第一步應(yīng)驗證( ) A.n=1 B.n=2

4、 C.n=3 D.n=4 解析:由題意知n≥3,∴應(yīng)驗證n=3.答案:C 2.用數(shù)學(xué)歸納法證明4+3n+2能被13整除,其中n∈N 證明: (1)當(dāng)n=1時,42×1+1+31+2=91能被13整除 (2)假設(shè)當(dāng)n=k時,42k+1+3k+2能被13整除,則當(dāng)n=k+1時, 42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3 =42k+1·13+3·(42k+1+3k+2) ∵42k+1·13能被13整除,42k+1+3k+2能被13整除 ∴當(dāng)n=k+1時也成立. 由①②知,當(dāng)n∈N*時,42n+1+3n+2能被13整除.

5、 例2、求證:. 分析:該命題意圖:本題主要考查應(yīng)用數(shù)學(xué)歸納法證明不等式的方法和一般步驟。 用數(shù)學(xué)歸納法證明,要完成兩個步驟,這兩個步驟是缺一不可的.但從證題的難易來分析,證明第二步是難點(diǎn)和關(guān)鍵,要充分利用歸納假設(shè),做好命題從n=k到n=k+1的轉(zhuǎn)化,這個轉(zhuǎn)化要求在變化過程中結(jié)構(gòu)不變. 證明: (1)當(dāng)n=2時,右邊=,不等式成立. (2)假設(shè)當(dāng)時命題成立,即 . 則當(dāng)時,    所以則當(dāng)時,不等式也成立.    由(1),(2)可知,原不等式對一切均成立. 點(diǎn)評:本題在由到時的推證過程中, (1)一定要注意分析清楚命題的結(jié)構(gòu)特征,即由到時不等式左端

6、項數(shù)的增減情況; (2)應(yīng)用了放縮技巧: 例3、已知,, 用數(shù)學(xué)歸納法證明:. 證明: (1)當(dāng)n=2時,,∴命題成立. (2)假設(shè)當(dāng)時命題成立,即 . 則當(dāng)時,    所以則當(dāng)時,不等式也成立.    由(1),(2)可知,原不等式對一切均成立. 點(diǎn)評:本題在由到時的推證過程中, (1)不等式左端增加了項,而不是只增加了“”這一項,否則證題思路必然受阻; (2)應(yīng)用了放縮技巧: 練習(xí): 1、證明不等式: 分析 1、數(shù)學(xué)歸納法的基本步驟: 設(shè)P(n)是關(guān)于自然數(shù)n的命題,若 1°P(n

7、0)成立(奠基) 2°假設(shè)P(k)成立(k≥n0),可以推出P(k+1)成立(歸納),則P(n)對一切大于等于n0的自然數(shù)n都成立. 2、用數(shù)學(xué)歸納法證明不等式是較困難的課題,除運(yùn)用證明不等式的幾種基本方法外,經(jīng)常使用的方法就是放縮法,針對目標(biāo),合理放縮,從而達(dá)到目標(biāo). 證明:(1)當(dāng)n=1時,不等式成立. (2)假設(shè)n=k時,不等式成立,即 那么, 這就是說,n=k+1時,不等式也成立. 根據(jù)(1)(2)可知不等式對n∈N+都成立. 2.求證:用數(shù)學(xué)歸納法證明 . 證明: (1) 當(dāng)n=1時, ,不等式成立; 當(dāng)n=2時, ,不等式成立; 當(dāng)n=3時

8、, ,不等式成立. (2)假設(shè)當(dāng)時不等式成立,即 . 則當(dāng)時,  , ∵,∴,(*) 從而, ∴. 即當(dāng)時,不等式也成立.  由(1),(2)可知,對一切都成立. 點(diǎn)評: 因為在(*)處,當(dāng)時才成立,故起點(diǎn)只證n=1還不夠,因此我們需注意命題的遞推關(guān)系式中起點(diǎn)位置的推移. 3.求證:,其中,且. 分析:此題是xx年廣東高考數(shù)學(xué)試卷第21題的適當(dāng)變形,有兩種證法 證法一:用數(shù)學(xué)歸納法證明. (1)當(dāng)m=2時,,不等式成立. (2)假設(shè)時,有, 則 , ∵,∴,即. 從而, 即時,亦有. 由(1)和(2)知,對都成立. 證法二:作差

9、、放縮,然后利用二項展開式和放縮法證明. ∴當(dāng),且時,. 例4、(xx年江西省高考理科數(shù)學(xué)第21題第(1)小題,本小題滿分12分) 已知數(shù)列 證明 求數(shù)列的通項公式an. 分析:近年來高考對于數(shù)學(xué)歸納法的考查,加強(qiáng)了數(shù)列推理能力的考查。對數(shù)列進(jìn)行了考查,和數(shù)學(xué)歸納法一起,成為壓軸題。 解:(1)方法一 用數(shù)學(xué)歸納法證明: 1°當(dāng)n=1時, ∴,命題正確. 2°假設(shè)n=k時有 則 而 又 ∴時命題正確. 由1°、2°知,對一切n∈N時有 方法二:用數(shù)學(xué)歸納法證明: 1°當(dāng)n=1時,∴; 2°假設(shè)n=k時有成立,

10、 令,在[0,2]上單調(diào)遞增, 所以由假設(shè)有: 即 也即當(dāng)n=k+1時 成立, 所以對一切. (2)下面來求數(shù)列的通項: 所以 則 又bn=-1,所以 . 點(diǎn)評: 本題問給出的兩種方法均是用數(shù)學(xué)歸納法證明,所不同的是:方法一采用了作差比較法;方法二利用了函數(shù)的單調(diào)性. 本題也可先求出第(2)問,即數(shù)列的通項公式,然后利用函數(shù)的單調(diào)性和有界性,來證明第(1)問的不等式.但若這樣做,則無形當(dāng)中加大了第(1)問的難度,顯然不如用數(shù)學(xué)歸納法證明來得簡捷. 練習(xí): 1.試證明:不論正數(shù)a、b、c是等差數(shù)列還是等比數(shù)列,當(dāng)n>1,n∈N*且a、b、c互不相等時

11、,均有:an+cn>2bn. 分析:該命題意圖:本題主要考查數(shù)學(xué)歸納法證明不等式,考查的知識包括等差數(shù)列、等比數(shù)列的性質(zhì)及數(shù)學(xué)歸納法證明不等式的一般步驟. 技巧與方法:本題中使用到結(jié)論:(ak-ck)(a-c)>0恒成立(a、b、c為正數(shù)),從而ak+1+ck+1>ak·c+ck·a. 證明:(1)設(shè)a、b、c為等比數(shù)列,a=,c=bq(q>0且q≠1) ∴an+cn=+bnqn=bn(+qn)>2bn (2)設(shè)a、b、c為等差數(shù)列,則2b=a+c猜想>()n(n≥2且n∈N*) 下面用數(shù)學(xué)歸納法證明: ①當(dāng)n=2時,由2(a2+c2)>(a+c)2,∴ ②設(shè)n=k時成立

12、,即 則當(dāng)n=k+1時, (ak+1+ck+1+ak+1+ck+1) >(ak+1+ck+1+ak·c+ck·a)=(ak+ck)(a+c) >()k·()=()k+1 根據(jù)①、②可知不等式對n>1,n∈N*都成立. 二.基礎(chǔ)訓(xùn)練 一、選擇題 1.已知f(n)=(2n+7)·3n+9,存在自然數(shù)m,使得對任意n∈N,都能使m整除f(n),則最大的m的值為( ) A.30 B.26 C.36 D.6 解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36 ∴f(1),f(2),f(3)能被36整除,猜想f(n)能被3

13、6整除. 證明:n=1,2時,由上得證,設(shè)n=k(k≥2)時, f(k)=(2k+7)·3k+9能被36整除,則n=k+1時, f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k =(6k+27)·3k-(2k+7)·3k =(4k+20)·3k=36(k+5)·3k-2(k≥2) f(k+1)能被36整除 ∵f(1)不能被大于36的數(shù)整除,∴所求最大的m值等于36. 答案:C 二、填空題 2.觀察下列式子:…則可歸納出_________. 解析: (n∈N*) (n∈N*) 3.已知a1=,an+1=,則a2,a3,a4,a5的值分別為

14、_________,由此猜想an=_________. 、、、 三、解答題 4.若n為大于1的自然數(shù),求證:. 證明:(1)當(dāng)n=2時, (2)假設(shè)當(dāng)n=k時成立,即 所以:對于n∈N*,且n>1時,有 5.已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145. (1)求數(shù)列{bn}的通項公式bn; (2)設(shè)數(shù)列{an}的通項an=loga(1+)(其中a>0且a≠1)記Sn是數(shù)列{an}的前n項和,試比較Sn與logabn+1的大小,并證明你的結(jié)論. (1)解:設(shè)數(shù)列{bn}的公差為d,由題意得,∴bn=3n-2 (2)證明:由bn=3n

15、-2知 Sn=loga(1+1)+loga(1+)+…+loga(1+) =loga[(1+1)(1+)…(1+ )] 而logabn+1=loga,于是,比較Sn與logabn+1的大小比較(1+1)(1+)…(1+)與的大小. 取n=1,有(1+1)= 取n=2,有(1+1)(1+ 推測:(1+1)(1+)…(1+)> (*) ①當(dāng)n=1時,已驗證(*)式成立. ②假設(shè)n=k(k≥1)時(*)式成立,即(1+1)(1+)…(1+)> 則當(dāng)n=k+1時, ,即當(dāng)n=k+1時,(*)式成立 由①②知,(*)式對任意正整數(shù)n都成立. 于是,當(dāng)a>1時,Sn>lo

16、gabn+1,當(dāng) 0<a<1時,Sn<logabn+1 6.設(shè)實(shí)數(shù)q滿足|q|<1,數(shù)列{an}滿足:a1=2,a2≠0,an·an+1=-qn,求an表達(dá)式,又如果S2n<3,求q的取值范圍. 解:∵a1·a2=-q,a1=2,a2≠0, ∴q≠0,a2=-, ∵an·an+1=-qn,an+1·an+2=-qn+1 兩式相除,得,即an+2=q·an 于是,a1=2,a3=2·q,a5=2·qn…猜想:a2n+1=-qn(n=1,2,3,…) 綜合①②,猜想通項公式為an= 下證:(1)當(dāng)n=1,2時猜想成立 (2)設(shè)n=2k-1時,a2k-1=2·qk-1則n=2

17、k+1時,由于a2k+1=q·a2k-1 ∴a2k+1=2·qk即n=2k-1成立. 可推知n=2k+1也成立. 設(shè)n=2k時,a2k=-qk,則n=2k+2時,由于a2k+2=q·a2k, 所以a2k+2=-qk+1,這說明n=2k成立,可推知n=2k+2也成立. 綜上所述,對一切自然數(shù)n,猜想都成立. 這樣所求通項公式為an= S2n=(a1+a3…+a2n-1)+(a2+a4+…+a2n) =2(1+q+q2+…+qn-1)- (q+q2+…+qn) 由于|q|<1,∴= 依題意知<3,并注意1-q>0,|q|<1解得-1<q<0或0<q< 三.鞏

18、固練習(xí) 1. (06 年湖南卷. 理 .19本小題滿分14分) 已知函數(shù),數(shù)列{}滿足: 證明:(ⅰ);(ⅱ). 證明: (I).先用數(shù)學(xué)歸納法證明,n=1,2,3,… (i).當(dāng)n=1時,由已知顯然結(jié)論成立. (ii).假設(shè)當(dāng)n=k時結(jié)論成立,即.因為0

19、上是增函數(shù). 又g (x)在[0,1]上連續(xù),且g (0)=0, 所以當(dāng)時,g (x)>0成立.于是.        故. 點(diǎn)評:不等式的問題常與函數(shù)、三角、數(shù)列、導(dǎo)數(shù)、幾何等數(shù)學(xué)分支交匯,綜合考查運(yùn)用不等式知識解決 問題的能力,在交匯中尤其以各分支中蘊(yùn)藏的不等式結(jié)論的證明為重點(diǎn). 需要靈活運(yùn)用各分支的數(shù)學(xué)知識. 2. ( 05 年遼寧卷.19本小題滿分12分) 已知函數(shù)設(shè)數(shù)列}滿足,數(shù)列}滿足 (Ⅰ)用數(shù)學(xué)歸納法證明; (Ⅱ)證明 分析:本小題主要考查數(shù)列、等比數(shù)列、不等式等基本知識,考查運(yùn)用數(shù)學(xué)歸納法解決有關(guān)問題的能力 (Ⅰ)證明:當(dāng) 因為a1=

20、1, 所以 下面用數(shù)學(xué)歸納法證明不等式 (1)當(dāng)n=1時,b1=,不等式成立, (2)假設(shè)當(dāng)n=k時,不等式成立,即 那么 所以,當(dāng)n=k+1時,不等也成立。 根據(jù)(1)和(2),可知不等式對任意n∈N*都成立。 (Ⅱ)證明:由(Ⅰ)知, 所以 故對任意) 3.(05 年湖北卷.理22.本小題滿分14分) 已知不等式為大于2的整數(shù),表示不超過的最大整數(shù). 設(shè)數(shù)列的各項為正,且滿足 (Ⅰ)證明 (Ⅱ)猜測數(shù)列是否有極限?如果有,寫出極限的值(不必證明); 分析:本小題主要考查數(shù)列、極限及不等式的綜合應(yīng)用以及歸納遞推的思想. (Ⅰ)證法1:∵當(dāng) 即 于是有 所有不等式兩邊相加可得 由已知不等式知,當(dāng)n≥3時有, ∵ 證法2:設(shè),首先利用數(shù)學(xué)歸納法證不等式 (i)當(dāng)n=3時, 由 知不等式成立. (ii)假設(shè)當(dāng)n=k(k≥3)時,不等式成立,即 則 即當(dāng)n=k+1時,不等式也成立. 由(i)、(ii)知, 又由已知不等式得 (Ⅱ)有極限,且 (Ⅲ)∵ 則有 故取N=1024,可使當(dāng)n>N時,都有

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!