影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022春八年級(jí)數(shù)學(xué)下冊(cè) 第十七章 勾股定理復(fù)習(xí)教案 (新版)新人教版

上傳人:xt****7 文檔編號(hào):105314755 上傳時(shí)間:2022-06-11 格式:DOC 頁(yè)數(shù):6 大?。?5KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022春八年級(jí)數(shù)學(xué)下冊(cè) 第十七章 勾股定理復(fù)習(xí)教案 (新版)新人教版_第1頁(yè)
第1頁(yè) / 共6頁(yè)
2022春八年級(jí)數(shù)學(xué)下冊(cè) 第十七章 勾股定理復(fù)習(xí)教案 (新版)新人教版_第2頁(yè)
第2頁(yè) / 共6頁(yè)
2022春八年級(jí)數(shù)學(xué)下冊(cè) 第十七章 勾股定理復(fù)習(xí)教案 (新版)新人教版_第3頁(yè)
第3頁(yè) / 共6頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022春八年級(jí)數(shù)學(xué)下冊(cè) 第十七章 勾股定理復(fù)習(xí)教案 (新版)新人教版》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2022春八年級(jí)數(shù)學(xué)下冊(cè) 第十七章 勾股定理復(fù)習(xí)教案 (新版)新人教版(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022春八年級(jí)數(shù)學(xué)下冊(cè) 第十七章 勾股定理復(fù)習(xí)教案 (新版)新人教版 教學(xué)目標(biāo): 1.會(huì)用勾股定理解決簡(jiǎn)單問(wèn)題。 2.會(huì)用勾股定理的逆定理判定直角三角形。 3.會(huì)用勾股定理解決綜合問(wèn)題和實(shí)際問(wèn)題。 教學(xué)重點(diǎn):回顧并思考勾股定理及逆定理 教學(xué)難點(diǎn):勾股定理及逆定理在生活中的廣泛應(yīng)用。 教學(xué)過(guò)程: 一、出示目標(biāo) 1.會(huì)用勾股定理解決簡(jiǎn)單問(wèn)題。 2.會(huì)用勾股定理的逆定理判定直角三角形。 3.會(huì)用勾股定理解決綜合問(wèn)題和實(shí)際問(wèn)題。 二、知識(shí)結(jié)構(gòu)圖 定理: 直角三角形的性質(zhì):勾股定理 應(yīng)用:主要用于計(jì)算 勾股定理

2、 直角三角形的判別方法::若三角形的三邊滿(mǎn)足 則它是一個(gè)直角三角形. 三、知識(shí)點(diǎn)回顧 1.勾股定理的應(yīng)用 勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用有:(1)已知直角三角形的兩邊求第三邊 (2)已知直角三角形的一邊與另兩邊的關(guān)系。求直角三角形的另兩邊 (3)利用勾股定理可以證明線(xiàn)段平方關(guān)系的問(wèn)題 (4)勾股定理的直接作用是知道直角三角形任意兩邊的長(zhǎng)度,求第三邊的長(zhǎng).這里一定要注意找準(zhǔn)斜邊、直角邊;二要熟悉公式的變形: ,. 勾股定理的探索與驗(yàn)證,一般采用“構(gòu)造法”.通過(guò)構(gòu)造幾何圖形,并計(jì)算圖形面積得出一個(gè)等式,從而得出或驗(yàn)證勾

3、股定理. 2.如何判定一個(gè)三角形是直角三角形 (1) 先確定最大邊(如c) (2) 驗(yàn)證與是否具有相等關(guān)系 (3) 若=,則△ABC是以∠C為直角的直角三角形;若≠, 則△ABC不是直角三角形。 3、三角形的三邊分別為a、b、c,其中c為最大邊,若,則三角形是直角三角形;若,則三角形是銳角三角形;若,則三角形是鈍角三角形.所以使用勾股定理的逆定理時(shí)首先要確定三角形的最大邊 4、勾股數(shù) 滿(mǎn)足=的三個(gè)正整數(shù),稱(chēng)為勾股數(shù) 如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41 四、典型例題分析 例

4、1:如果一個(gè)直角三角形的兩條邊長(zhǎng)分別是6cm和8cm,那么這個(gè)三角形的周長(zhǎng)和面積分別是多少? 分析: 這里知道了直角三角形的兩條邊的長(zhǎng)度,應(yīng)用勾股定理可求出第三條邊的長(zhǎng)度,再求周長(zhǎng).但題中未指明已知的兩條邊是_________還是_______,因此要分兩種情況討論. 例2: 如圖19—11是一只圓柱形的封閉易拉罐,它的底面半徑為4cm,高為15cm,問(wèn)易拉罐內(nèi)可放的攪拌棒(直線(xiàn)型)最長(zhǎng)可以是多長(zhǎng)? 分析:攪拌棒在易拉罐中的位置可以有多種情形,如圖中的、,但它們都不是最長(zhǎng)的,根據(jù)實(shí)際經(jīng)驗(yàn),當(dāng)攪拌棒的一個(gè)端點(diǎn)在B點(diǎn),另一個(gè)端點(diǎn)在A(yíng)點(diǎn)時(shí)最長(zhǎng),

5、此時(shí)可以把線(xiàn)段AB放在Rt△ABC中,其中BC為底面直徑. 例3:已知單位長(zhǎng)度為“1”,畫(huà)一條線(xiàn)段,使它的長(zhǎng)為. 分析:是無(wú)理數(shù),用以前的方法不易準(zhǔn)確畫(huà)出表示長(zhǎng)為的線(xiàn)段,但由勾股定理可知,兩直角邊分別為_(kāi)_______的直角三角形的斜邊長(zhǎng)為. 例4:如圖,在正方形ABCD中,E是BC的中點(diǎn),F(xiàn)為CD上一點(diǎn),且.求證:△AEF是直角三角形. 分析:要證△AEF是直角三角形,由勾股定理的逆定理,只要證_________________________________________即可. 例5:如圖,在四邊形ABCD中,∠C=90°,AB=13,BC=4,CD=3,AD=12

6、,求證:AD⊥BD. 分析:可將直線(xiàn)的互相垂直問(wèn)題轉(zhuǎn)化成直角三角形的判定問(wèn)題. 例6:已知:如圖△ABC中,AB=AC=10,BC=16,點(diǎn)D在BC上,DA⊥CA于A(yíng).求:BD的長(zhǎng). 分析:可設(shè)BD長(zhǎng)為xcm,然后尋找含x的等式即可,由AB=AC=10知△ABC為等腰三角形,可作高利用其“三線(xiàn)合一”的性質(zhì)來(lái)幫助建立方程. 例7:一只螞蟻從長(zhǎng)、寬都是3,高是8的長(zhǎng)方體紙箱的A點(diǎn)沿紙箱爬到B點(diǎn),那么它所爬行的最短路線(xiàn)的長(zhǎng)是___________

7、_______________________.(分析:可以) 分析:將點(diǎn)A與點(diǎn)B展開(kāi)到同一平面內(nèi),由:“兩點(diǎn)之間,線(xiàn)段最短?!痹俑鶕?jù)“勾股定理”求出最短路線(xiàn) 五、補(bǔ)充本章注意事項(xiàng) 勾股定理是平面幾何中的重要定理,其應(yīng)用極其廣泛,在應(yīng)用勾股定理時(shí),要注意以下幾點(diǎn):  1、要注意正確使用勾股定理 例1 在Rt△ABC中,∠B=Rt∠,a=1,,求c。 2、要注意定理存在的條件 例2 在邊長(zhǎng)為整數(shù)的△ABC中,AB>AC,如果AC=4,BC=3,求AB的長(zhǎng)。 3、要注意原定理與逆定理的區(qū)別 例3 如圖1,在△ABC中,AD是高,且,求證:△ABC為直角三角形

8、。   4、要注意防止漏解 例4 在Rt△ABC中,a=3,b=4,求c。 5、要注意正逆合用 在解題中,我們常將勾股定理及其逆定理結(jié)合起來(lái)使用,一個(gè)是性質(zhì),一個(gè)是判定,真所謂珠聯(lián)壁合。當(dāng)然在具體運(yùn)用時(shí),到底是先用性質(zhì),還是先用判定,要視具體情況而言?!  ? 例5 在△ABC中,D為BC邊上的點(diǎn),已知AB=13,AD=12,AC=15,BD=5,那么DC=_________。 6、要注意創(chuàng)造條件應(yīng)用 例6 如圖3,在△ABC中,∠C=90°,D是AB的中點(diǎn),DE⊥DE,DE、DF分別交AC、BC、于E、F,求證:   分析 因?yàn)镋F、AE、BF不是一個(gè)三解形的三邊,所以要證明結(jié)論成立,必須作適當(dāng)?shù)妮o助線(xiàn),把結(jié)論中三條線(xiàn)段遷移到一個(gè)三角形中,然后再證明與EF相等的邊所對(duì)的角為直角既可,為此,延長(zhǎng)ED到G,使DG=DE,連結(jié)BG、FG,則易證明信BG=AE,GF=EF,   ∠DBG=∠DAE=∠BAC,由題設(shè)易知∠ABC+∠BAC=90°,故有∠FBG=∠FBD+∠DBG=∠ABC+∠BAC=90°,在Rt△FBG中,由勾股定理有:,從而。

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!