九年級(jí)數(shù)學(xué)下冊(cè) 《二次函數(shù)的圖象和性質(zhì)》教案 冀教版
《九年級(jí)數(shù)學(xué)下冊(cè) 《二次函數(shù)的圖象和性質(zhì)》教案 冀教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《九年級(jí)數(shù)學(xué)下冊(cè) 《二次函數(shù)的圖象和性質(zhì)》教案 冀教版(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、九年級(jí)數(shù)學(xué)下冊(cè) 《二次函數(shù)的圖象和性質(zhì)》教案 冀教版 課時(shí)安排 2課時(shí) 從容說(shuō)課 本節(jié)課在二次函數(shù)y=ax2和y=ax2+c的圖象的基礎(chǔ)上,進(jìn)一步研究y=a(x-h)2和y=a(x-h)2+k的圖象,并探索它們之間的關(guān)系和各自的性質(zhì).旨在全面掌握所有二次函數(shù)的圖象和性質(zhì)的變化情況.同時(shí)對(duì)二次函數(shù)的研究,經(jīng)歷了從簡(jiǎn)單到復(fù)雜,從特殊到一般的過(guò)程:先是從y=x2開(kāi)始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合學(xué)生的認(rèn)知特點(diǎn),體會(huì)建立二次函數(shù)對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)公式的必要性. 在教學(xué)中,主要是讓學(xué)生自己動(dòng)
2、手畫(huà)圖象,通過(guò)自己的觀察、交流、對(duì)比、概括和反思 等探索活動(dòng),使學(xué)生達(dá)到對(duì)拋物線自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解.并能利用它的性質(zhì)解決問(wèn)題. 第1課時(shí) 課 題 §2.4.1 二次函數(shù)y=ax2+bx+c的圖象(一) 教學(xué)目標(biāo) (一)教學(xué)知識(shí)點(diǎn) 1.能夠作出函數(shù)y=a(x-h)2和y=a(x-h)2+k的圖象,并能理解它與y=ax2的圖象的關(guān)系.理解a,h,k對(duì)二次函數(shù)圖象的影響. 2.能夠正確說(shuō)出y=a(x-h)2+k圖象的開(kāi)口方向、對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo). (二)能力訓(xùn)練要求 1.通過(guò)學(xué)生自己的探索活動(dòng),對(duì)二次函數(shù)性質(zhì)
3、的研究,達(dá)到對(duì)拋物線自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解. 2.經(jīng)歷探索二次函數(shù)的圖象的作法和性質(zhì)的過(guò)程,培養(yǎng)學(xué)生的探索能力. (三)情感與價(jià)值觀要求 1.經(jīng)歷觀察、猜想、總結(jié)等數(shù)學(xué)活動(dòng)過(guò)程,發(fā)展合情推理能力和初步的演繹推理能力,能有條理地、清晰地闡述自己的觀點(diǎn). 2.讓學(xué)生學(xué)會(huì)與人合作,并能與他人交流思維的過(guò)程和結(jié)果. 教學(xué)重點(diǎn) 1.經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的作法和性質(zhì)的過(guò)程. 2.能夠作出y=a(x-h)2和y=a(x-h)2+k的圖象,并能理解它與y=ax2的圖象的關(guān)系,理解a、h、k對(duì)二次函數(shù)圖象的影響.
4、 3.能夠正確說(shuō)出y=a(x-h)2+k圖象的開(kāi)口方向、對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo). 教學(xué)難點(diǎn) 能夠作出y=a(x-h)2和y=a(x-h)2+k的圖象,并能夠理解它與y=ax2的圖象的關(guān)系,理解a、h、k對(duì)二次函數(shù)圖象的影響. 教學(xué)方法 探索——比較——總結(jié)法. 教具準(zhǔn)備 投影片四張 第一張:(記作§2.4.1 A) 第二張:(記作§2.4.1 B) 第三張:(記作§2.4.1 C) 第四張:(記作§2.4.1 D) 教學(xué)過(guò)程 Ⅰ.創(chuàng)設(shè)問(wèn)題情境、引入新課 [師]我們已學(xué)習(xí)過(guò)兩種類(lèi)型的二次函數(shù),即y
5、=ax2與y=ax2+c,知道它們都是軸對(duì)稱(chēng)圖形,對(duì)稱(chēng)軸都是y軸,有最大值或最小值.頂點(diǎn)都是原點(diǎn).還知道y=ax2+c的圖象是函數(shù)y=ax2的圖象經(jīng)過(guò)上下移動(dòng)得到的,那么y=ax2的圖象能否左右移動(dòng)呢?它左右移動(dòng)后又會(huì)得到什么樣的函數(shù)形式,它又有哪些性質(zhì)呢?本節(jié)課我們就來(lái)研究有關(guān)問(wèn)題. Ⅱ.新課講解 一、比較函數(shù)y=3x2與y=3(X-1)2的圖象的性質(zhì). 投影片:(§2.4 A) (1)完成下表,并比較3x2和3(x-1)2的值, 它們之間有什么關(guān)系? X -3 -2 -1 0 1 2 3 4 3x2 3(
6、x-1)2 (2)在下圖中作出二次函數(shù)y=3(x-1)2的圖象.你是怎樣作的? (3)函數(shù)y=3(x-1)2的圖象與y=3x2的圖象有什么關(guān)系?它是軸對(duì)稱(chēng)圖形嗎?它的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)分別是什么? (4)x取哪些值時(shí),函數(shù)y=3(x-1)2的值隨x值的增大而增大?x取哪些值時(shí),函數(shù)y=3(x-1)2的值隨x值的增大而減小? [師]請(qǐng)大家先自己填表,畫(huà)圖象,思考每一個(gè)問(wèn)題,然后互相討論,總結(jié). [生](1)第二行從左到右依次填:27.12,3,0,3,12,27,48;第三行從左到右依次填48,27,12,3,0,3,12,27.
7、 (2)用描點(diǎn)法作出y=3(x-1)2的圖象,如上圖. (3)二次函數(shù))y=3(x-1)2的圖象與y=3x2的圖象形狀相同,開(kāi)口方向也相同,但對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)不同,y=3(x-1)2的圖象的對(duì)稱(chēng)軸是直線x=1,頂點(diǎn)坐標(biāo)是(1,0). (4)當(dāng)x>1時(shí),函數(shù)y=3(x-1)2的值隨x值的增大而增大,x<1時(shí),y=3(x-1)2的值隨x值的增大而減?。? [師]能否用移動(dòng)的觀點(diǎn)說(shuō)明函數(shù)y=3x2與y=3(x-1)2的圖象之間的關(guān)系呢? [生]y=3(x-1)2的圖象可以看成是函數(shù))y=3x2的圖象整體向右平移得到的. [師]能像上節(jié)課那樣比較它們
8、圖象的性質(zhì)嗎? [生]相同點(diǎn): a.圖象都中拋物線,且形狀相同,開(kāi)口方向相同. b. 都是軸對(duì)稱(chēng)圖形. c.都有最小值,最小值都為0. d.在對(duì)稱(chēng)軸左側(cè),y都隨x的增大而減小.在對(duì)稱(chēng)軸右側(cè),y都隨x的增大而增大. 不同點(diǎn): a.對(duì)稱(chēng)軸不同,y=3x2的對(duì)稱(chēng)軸是y軸y=3(x-1)2的對(duì)稱(chēng)軸是x=1. b. 它們的位置不問(wèn). c. 它們的頂點(diǎn)坐標(biāo)不同.y=3x2的頂點(diǎn)坐標(biāo)為(0,0),y=3(x-1)2的頂點(diǎn)坐標(biāo)為(1,0), 聯(lián)系: 把函數(shù)y=3x2的圖象向右移動(dòng)一個(gè)單位,則得到函數(shù)y
9、=3(x-1)2的圖像. 二、做一做 投影片:(§2.4.1 B) 在同一直角坐標(biāo)系中作出函數(shù)y=3(x-1)2和y=3(x-1)2+2的圖象.并比較它們圖象的性質(zhì). [生]圖象如下 它們的圖象的性質(zhì)比較如下: 相同點(diǎn): a.圖象都是拋物線,且形狀相同,開(kāi)口方向相同. b. 都足軸對(duì)稱(chēng)圖形,對(duì)稱(chēng)軸都為x=1. c. 在對(duì)稱(chēng)軸左側(cè),y都隨x的增大而減小,在對(duì)稱(chēng)軸右側(cè),y都隨x的增大而增大. 不同點(diǎn): a.它們的頂點(diǎn)不同,最值也不同.y=3(x-1)2的頂點(diǎn)坐標(biāo)為(1.0),最小值為0.y=3
10、(x-1)2+2的頂點(diǎn)坐標(biāo)為(1,2),最小值為2. b. 它們的位置不同. 聯(lián)系: 把函數(shù)y=3(x-1)2的圖象向上平移2個(gè)單位,就得到了函數(shù)y=3(x-1)2+2的圖象. 三、總結(jié)函數(shù)y=3x2,y=3(x-1)2,y=3(x-1)2+2的圖象之間的關(guān)系. [師]通過(guò)上畫(huà)的討論,大家能夠總結(jié)出這三種函數(shù)圖象之間的關(guān)系嗎? [生]可以. 二次函數(shù)y=3x2,y=3(x-1)2,y=3(x-1)2+2的圖象都是拋物線.并且形狀相同,開(kāi)口方向相同,只是位置不同,頂點(diǎn)不同,對(duì)稱(chēng)軸不同,將函數(shù)y=3x2的圖象向右平移1個(gè)單位,就
11、得到函數(shù)y=3(x-1)2的圖象;再向上平移2個(gè)單位,就得到函數(shù)y=3(x-1)2+2的圖象. [師]大家還記得y=3x2與y=3x2-1的圖象之間的關(guān)系嗎? [生]記得,把函數(shù)y=3x2向下平移1個(gè)平位,就得到函數(shù)y=3x2-1的圖象. [師]你能系統(tǒng)總結(jié)一下嗎? [生]將函數(shù)y=3x2的圖象向下移動(dòng)1個(gè)單位,就得到了函數(shù)y=3x2-1的圖象,向上移動(dòng)1個(gè)單位,就得到函數(shù)y=3x2+1的圖象;將y=3x2的圖象向右平移動(dòng)1個(gè)單位,就得到函數(shù)y=3(x-1)2的圖象:向左移動(dòng)1個(gè)單位,就得到函數(shù)y=3(x+1)2的圖象;由函數(shù)y=3x2向右平移1個(gè)單位、
12、再向上平移2個(gè)單位,就得到函數(shù)y=3(x-1)2+2的圖象. [師]下面我們就一般形式來(lái)進(jìn)行總結(jié). 投影片:(§2.4.1 C) 一般地,平移二次函數(shù)y=ax2的圖象便可得到二次函數(shù)為y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的圖象. (1)將y=ax2的圖象上下移動(dòng)便可得到函數(shù)y=ax2+c的圖象,當(dāng)c>0時(shí),向上移動(dòng),當(dāng)c<0時(shí),向下移動(dòng). (2)將函數(shù)y=ax2的圖象左右移動(dòng)便可得到函數(shù)y=a(x-h)2的圖象,當(dāng)h>0時(shí),向右移動(dòng),當(dāng)h<0時(shí),向左移動(dòng). (3)將函數(shù)y=ax2的圖象既上下移,又左右移,便可得到函數(shù)y=a(x-h)2+k的圖象
13、. 因此,這些函數(shù)的圖象都是一條拋物線,它們的開(kāi)口方向,對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)與a,h,k的值有關(guān). 下面大家經(jīng)過(guò)討論之后,填寫(xiě)下表: y=a(x-h)2+k 開(kāi)口方向 對(duì)稱(chēng)軸 頂點(diǎn)坐標(biāo) a>0 a<0 四、議一議 投影片:(§2,4.1 D) (1)二次函數(shù)y=3(x+1)2的圖象與二次函數(shù)y=3x2的圖象有什么關(guān)系?它是軸對(duì)稱(chēng)圖形嗎?它的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)分別是什么? (2)二次函數(shù)y=-3(x-2)2+4的圖象與二次函數(shù)y=-3x2的圖象有什么關(guān)系?它是軸對(duì)稱(chēng)圖形嗎?它的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)分別是什么? (3)對(duì)于二次函數(shù)y=3(x+1)2,
14、當(dāng)x取哪些值時(shí),y的值隨x值的增大而增大?當(dāng)x取哪些值時(shí),y的值隨x值的增大而減小?二次函數(shù)y=3(x+1)2+4呢? [師]在不畫(huà)圖象的情況下,你能回答上面的問(wèn)題嗎? [生](1)二次函數(shù)y=3(x+1)2的圖象與y=3x2的圖象形狀相同,開(kāi)口方向也相同,但對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)不同,y=3(x+1)2的圖象的對(duì)稱(chēng)軸是直線x=-1,頂點(diǎn)坐標(biāo)是(-1,0).只要將y=3x2的圖象向左平移1個(gè)單位,就可以得到y(tǒng)=3(x+1)2的圖象. (2)二次函數(shù)y=-3(x-2)2+4的圖象與y=-3x2的圖象形狀相同,只是位置不同,將函數(shù)y=-3x2的圖象向右平移2個(gè)單位,就得到y(tǒng)
15、=-3(x-2)2的圖象,再向上平移4個(gè)單位,就得到y(tǒng)=-3(x-2)2+4的圖象y=-3(x-2)2+4的圖象的對(duì)稱(chēng)軸是直線x=2,頂點(diǎn)坐標(biāo)是(2,4). (3)對(duì)于二次函數(shù)y=3(x+1)2和y=3(x+1)2+4,它們的對(duì)稱(chēng)軸都是x=-1,當(dāng)x<-1時(shí),y的值隨x值的增大而減??;當(dāng)x>-1時(shí),y的值隨x值的增大而增大. Ⅲ.課堂練習(xí) 隨堂練習(xí) Ⅳ.課時(shí)小結(jié) 本節(jié)課進(jìn)一步探究了函數(shù)y=3x2與y=3(x-1)2,y=3(x-1)2+2的圖象有什么關(guān)系,對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)分別是什么這些問(wèn)題.并作了歸納總結(jié).還能利用這個(gè)結(jié)果對(duì)其他的函數(shù)圖象進(jìn)行討
16、論. Ⅴ.課后作業(yè) 習(xí)題2.4 Ⅵ.活動(dòng)與探究 二次函數(shù)y=(x+2)2-1與y= (x-1)2+2的圖象是由函數(shù)y=x2的圖象怎樣移動(dòng)得到的?它們之間是通過(guò)怎樣移動(dòng)得到的? 解:y= (x+2)2-1的圖象是由y=x2的圖象向左平移2個(gè)單位,再向下平移1個(gè)單位得到的,y= (x-1)2+2的圖象是由y=x2的圖象向右平移1個(gè)單位,再向上平移2個(gè)單位得到的. y= (x+2)2-1的圖象向右平移3個(gè)單位,再向上平移3個(gè)單位得到y(tǒng)= (x-1)2+2的圖象. y= (x-1)2+2的圖象向左平移3個(gè)單位,再向下平移3個(gè)單位得到
17、y= (x+2)2-1的圖象. 板書(shū)設(shè)計(jì) §2.4.1 二次函數(shù)y=ax2+bx+c的圖象(一) 一、1. 比較函數(shù)y=3x2與y=3(x-1)2的 圖象和性質(zhì)(投影片§2.4.1 A) 2.做一做(投影片§2.4.1 B) 3.總結(jié)函數(shù)y=3x2,y=3(x-1)2y= 3(x-1)2+2的圖象之間的關(guān)系(投影片§2.4.1 C) 4.議一議(投影片§2.4.1 D) 二、課堂練習(xí) 1.隨堂練習(xí) 2.補(bǔ)充練習(xí) 三、課時(shí)小結(jié) 四、課后作業(yè) 備課資料 參考練習(xí) 在同一直角坐標(biāo)系內(nèi)作出函數(shù)y=-x2,y=-x2-1,y=-(x
18、+1)2-1的圖象,并討論它們的性質(zhì)與位置關(guān)系. 解:圖象略 它們都是拋物線,且開(kāi)口方向都向下;對(duì)稱(chēng)軸分別為y軸y軸,直線x=-1;頂點(diǎn)坐標(biāo)分別為(0,0),(0,-1),(-1,-1). y=-x2的圖象向下移動(dòng)1個(gè)單位得到y(tǒng)=-x2-1 的圖象;y=-x2的圖象向左移動(dòng)1個(gè)單位,向下移動(dòng)1個(gè)單位,得到y(tǒng)=-(x+1)2-1的圖象. 第2課時(shí) 課 題 §2.4.2 二次函數(shù)y=ax2+bx+c的圖象(二) 教學(xué)目標(biāo) (一)教學(xué)知識(shí)點(diǎn) 1.體會(huì)建立二次函數(shù)對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)公式的必要性.
19、 2.能夠利用二次函數(shù)的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)公式解決問(wèn)題. (二)能力訓(xùn)練要求 1.通過(guò)解決實(shí)際問(wèn)題,讓學(xué)生訓(xùn)練把教學(xué)知識(shí)運(yùn)用于實(shí)踐的能力. 2.通過(guò)學(xué)生合作交流來(lái)解決問(wèn)題,培養(yǎng)學(xué)生的合作交流能力. (三)情感與價(jià)值觀要求 1.經(jīng)歷將一些實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題的過(guò)程,掌握數(shù)學(xué)的基礎(chǔ)知識(shí)和基本技能,并能解決簡(jiǎn)單的問(wèn)題. 2.初步認(rèn)識(shí)數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系及對(duì)人類(lèi)歷史發(fā)展的作用. 教學(xué)重點(diǎn) 運(yùn)用二次函數(shù)的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)公式解決實(shí)際問(wèn)題. 教學(xué)難點(diǎn) 把數(shù)學(xué)問(wèn)題與實(shí)際問(wèn)題相聯(lián)系的過(guò)程. 教學(xué)方法 講解法.
20、 教具準(zhǔn)備 投影片三張 第一張:(記作§2.4.2 A) 第二張:(記作§2.4.2 B) 第三張:(記作§2.4.2 C) 教學(xué)過(guò)程 Ⅰ.創(chuàng)設(shè)問(wèn)題情境,引入新課 [師]上節(jié)課我們主要討論了相關(guān)函數(shù)y=ax2,y=a(x-h)2,y=a(x-h)+k的圖象的有關(guān)性質(zhì),特別練習(xí)了求函數(shù)的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).我們知道學(xué)習(xí)的目的就是為了應(yīng)用,那么究竟有什么用處呢?本節(jié)課將學(xué)習(xí)有關(guān)二次函數(shù)的應(yīng)用. Ⅱ.新課講解 一、1. 例題 [師]前幾節(jié)課我們研究了不同形式的二次函數(shù)的圖象,形如y=ax2,y=ax2+c,
21、y=a(x-h)2,y=a(x-h)2+k.并對(duì)它們的性質(zhì)進(jìn)行了比較.但對(duì)于二次函數(shù)的一般形式y(tǒng)=ax2+bx+c(a、b、c是常數(shù),a≠0),它是屬于上面形式中的哪一種呢?還是另外一種,它的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)是什么呢?下面我們一起來(lái)討論這個(gè)問(wèn)題. 投影片:(§2.4.2 A) 例:求二次函數(shù)y=ax2+bx+c的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo). 解:把y=ax2+bx+c的右邊配方,得 y=ax2+bx+c =a(x2+) =a[x2+2·x+()2+] =a(x+)2+. [師]大家看配方以后的形式屬于前面我們討論過(guò)的哪一種形式呢? [生]屬于y=a(x-h)2+k的形式
22、. [師]在y=a(x-h)2+k的形式中,我們知道對(duì)稱(chēng)軸為x=h頂點(diǎn)坐標(biāo)為(h,k).對(duì)比一下,y=ax2+bx+c中的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)是什么呢? [生甲]對(duì)稱(chēng)軸是x= ,頂點(diǎn)坐標(biāo)是(,). [師]確定嗎?大家再討論一下. [生]在y=a(x-h)2+k中是x-h,而y=a (x+)2+ 中是x+,它們的符號(hào)不同,應(yīng)把y=a(x+)2+ .進(jìn)行變形得 y=a[x-(-)2]+ .再對(duì)照y=a(x-h)2+k的形式得對(duì)稱(chēng)軸為x=-,頂點(diǎn)燃坐標(biāo)為(-,) [師]這位同學(xué)回答得非常棒. 至此,所有的二次函數(shù)的形式我們就都討論過(guò)了. 下面我們來(lái)
23、研究一些實(shí)際問(wèn)題. 二、有關(guān)橋梁?jiǎn)栴} 投影片:(§2.4.2 B) 下圖所示橋梁的兩條鋼纜具有相同的拋物線形狀.按照?qǐng)D中的直角坐標(biāo)系,左面的一條拋物線可以用y=0.0225x2+0.9x+10表示,而且左右兩條拋物線關(guān)于y軸對(duì)稱(chēng). (1)鋼纜的最低點(diǎn)到橋面的距離是多少? (2)兩條鋼纜最低點(diǎn)之間的距離是多少? (3)你是怎樣計(jì)算的?與同伴進(jìn)行交流. 分析:因?yàn)閮蓷l鋼纜都是拋物線形狀,且開(kāi)口向上.要求鋼纜的最低點(diǎn)到橋面的距離就是要求拋物線的最小值.又因?yàn)樽笥覂蓷l拋物線關(guān)于y軸對(duì)稱(chēng),所以它們的頂點(diǎn)也關(guān)于y軸對(duì)稱(chēng),兩條鋼纜最低點(diǎn)之間的距離就是兩條拋物線頂點(diǎn)的
24、橫坐標(biāo)絕對(duì)值之和或其中一條拋物線頂點(diǎn)橫坐標(biāo)絕對(duì)值的2倍.已知二次函數(shù)的形式是一般形式,所以應(yīng)先進(jìn)行配方化為y=a(x-h)2+k的形式,即頂點(diǎn)式. 解:y=0.0225x2+0.9x+10 =0.0225(x2+40x+) 二0.0225(x2+40x+400-400+) =0.0225(x+20)2+1. ∴對(duì)稱(chēng)軸為x=-20.頂點(diǎn)坐標(biāo)為(-20,1). (1)鋼纜的最低點(diǎn)到橋面的距離是1米. (2)兩條鋼纜最低點(diǎn)之間的距離是2×20=40米. (3)是用配方法求得頂點(diǎn)坐標(biāo)得到的,也可以直接代入頂點(diǎn)坐標(biāo)公式中求得
25、. [師]從上面的例題我們可知,拋物線在現(xiàn)實(shí)生活中的應(yīng)用很廣,因此大家要學(xué)好并運(yùn)用好它,對(duì)于給出的問(wèn)題要認(rèn)真思考,把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,從而用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題. 在上面的問(wèn)題中,大家能否求出右面的拋物線的表達(dá)式呢?請(qǐng)互相交流. 解:因?yàn)樽笥覂蓷l拋物線是關(guān)于y軸對(duì)稱(chēng)的,而關(guān)于y軸對(duì)稱(chēng)的圖形的特點(diǎn)是,所有的對(duì)應(yīng)點(diǎn)的坐標(biāo)滿足橫坐標(biāo)是互為相反數(shù),縱坐標(biāo)相等,我們可以利用這個(gè)特點(diǎn),在原有的左面的拋物線的表達(dá)式的基礎(chǔ)上,得到右面拋物線的表達(dá)式,即把y不變,x換為-x代入y=0.0225x2+0.9x+10中,得 y=0.0225(-x)2+0.9(-x)+10
26、 =0.0225x2-0.9x+10. 三、補(bǔ)充例題 投影片:(§2.4.2 C) 如右圖,一邊靠校園院墻,另外三 邊用50 m長(zhǎng)的籬笆,圍起一個(gè)長(zhǎng) 方形場(chǎng)地,設(shè)垂直院墻的邊長(zhǎng)為xm. (1)寫(xiě)出長(zhǎng)方形場(chǎng)地面積y(m2)與x的函數(shù)關(guān)系式; (2)畫(huà)出函數(shù)的圖象; (3)求邊長(zhǎng)為多少時(shí),長(zhǎng)方形面積最大,最大是多少? 解:(1)垂直院墻的邊長(zhǎng)為x m,另一邊長(zhǎng)為(50-2x)m.則 y=x(50-2x)=-2x2+50x=-2(x-)2+. (2)圖象略. (3)由(1)得,當(dāng)x=時(shí),y最大=. 所以當(dāng)邊長(zhǎng)為m時(shí),長(zhǎng)方形面積最大,最大面積為
27、 m2. Ⅲ.課堂練習(xí) 1.隨堂練習(xí) 2.補(bǔ)充練習(xí) 確定下列拋物線的開(kāi)口方向、對(duì)稱(chēng)軸與頂點(diǎn)坐標(biāo). (1)y=-x2+; (2)y=x2- 解:(1)y=-x2+ =-(x2-) =-( x2-) =-(x-)2+. 開(kāi)口方向向下,對(duì)稱(chēng)軸為x=,頂點(diǎn)坐標(biāo)為(,). (2)y=x2- =(x2-x-30) =(x2-x+--30) =(x-)2-. 開(kāi)口方向向上,對(duì)稱(chēng)軸是x= ,頂點(diǎn)坐標(biāo)為(, ). Ⅳ.課時(shí)小節(jié) 本節(jié)課學(xué)習(xí)了如何用配方法把二次函數(shù)的一般形式化成頂點(diǎn)式,并能根據(jù)頂點(diǎn)式解決一些問(wèn)題.
28、 Ⅴ.課后作業(yè) 習(xí)題2.5 Ⅵ.活動(dòng)與探究 利用Z+Z智能教育平臺(tái)(新世紀(jì)版)研究二次函數(shù)的圖象. 利用Z+Z智能教育平臺(tái)(新世紀(jì)版)可以探索二次函數(shù)y=ax2+bx+c的系數(shù)(a,b,c與圖象變化之間的關(guān)系. 先考察二次函數(shù)y=ax2的系數(shù)a對(duì)圖象的影響. 利用Z十Z智能教育平臺(tái)(新世紀(jì)版)在計(jì)算機(jī)上作出二次函數(shù)y=ax2的圖象.其中系數(shù)a可以通過(guò)鼠標(biāo)拖動(dòng)y軸上標(biāo)識(shí)為a的點(diǎn)而變化.圖1和圖2是a取不同值時(shí)得到的兩個(gè)圖象: 板書(shū)設(shè)計(jì) §2.4.2 二次函數(shù)y=ax2+bx+c的圖象(二) 一、1. 例題(投影片§2.4.2 A) 2.有關(guān)橋梁?jiǎn)栴}(投影片§2.4.2 B) 3.補(bǔ)充例題(投影片§2.4.2 C) 二、課堂練習(xí) 1.隨堂練習(xí) 2.補(bǔ)充練習(xí) 三、課時(shí)小結(jié) 四、課后作業(yè) 備課資料(略)
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)生產(chǎn)決策報(bào)告
- 進(jìn)口鐵礦粉的燒結(jié)性能及配礦方法
- 經(jīng)濟(jì)學(xué)說(shuō)史第十四章新凱恩斯主義
- 時(shí)間管理從拖延走向高效的基石
- (聽(tīng)賞)月光下的鳳尾竹
- 課題1水的組成 (10)(精品)
- 客戶溝通方法與技巧
- 大中華國(guó)際交易廣場(chǎng)寫(xiě)字樓項(xiàng)目營(yíng)銷(xiāo)推廣報(bào)告
- 易拉罐尺寸的最優(yōu)設(shè)計(jì)方案
- 智慧教室核舟記
- 信息化 BI 商業(yè)智能與企業(yè)即時(shí)戰(zhàn)情中心
- 語(yǔ)文蘇教版六年級(jí)上冊(cè)《船長(zhǎng)》第一課時(shí)
- 曲軸工藝基礎(chǔ)知識(shí)
- 電信集團(tuán)網(wǎng)規(guī)網(wǎng)優(yōu)A+級(jí)培訓(xùn)——11-CDMA功率控制及參數(shù)設(shè)置
- 三、物質(zhì)的密度 (2)