影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 第4講 三角函數(shù)的圖象與性質(zhì)教學(xué)案 理 北師大版

上傳人:彩*** 文檔編號:105383312 上傳時間:2022-06-12 格式:DOC 頁數(shù):26 大小:3.09MB
收藏 版權(quán)申訴 舉報 下載
2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 第4講 三角函數(shù)的圖象與性質(zhì)教學(xué)案 理 北師大版_第1頁
第1頁 / 共26頁
2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 第4講 三角函數(shù)的圖象與性質(zhì)教學(xué)案 理 北師大版_第2頁
第2頁 / 共26頁
2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 第4講 三角函數(shù)的圖象與性質(zhì)教學(xué)案 理 北師大版_第3頁
第3頁 / 共26頁

下載文檔到電腦,查找使用更方便

36 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 第4講 三角函數(shù)的圖象與性質(zhì)教學(xué)案 理 北師大版》由會員分享,可在線閱讀,更多相關(guān)《2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 第4講 三角函數(shù)的圖象與性質(zhì)教學(xué)案 理 北師大版(26頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第4講 三角函數(shù)的圖象與性質(zhì) 一、知識梳理 1.用五點法作正弦函數(shù)和余弦函數(shù)的簡圖 在正弦函數(shù)y=sin x,x∈[0,2π]的圖象上,五個關(guān)鍵點是:(0,0),(,1),(π,0),(,-1),(2π,0). 在余弦函數(shù)y=cos x,x∈[0,2π]的圖象上,五個關(guān)鍵點是:(0,1),(,0),(π,-1),(,0),(2π,1). 五點法作圖有三步:列表、描點、連線(注意光滑). 2.正弦、余弦、正切函數(shù)的圖象與性質(zhì) 函數(shù) y=sin x y=cos x y=tan x 圖象 定義域 R R {x|x∈R,且x≠kπ+,k∈Z}

2、 值域 [-1,1] [-1,1] R 奇偶 性 奇函數(shù) 偶函數(shù) 奇函數(shù) 單調(diào)性 在[-+2kπ,+2kπ](k∈Z)上是增函數(shù),在 [+2kπ,+2kπ](k∈Z)上是減函數(shù) 在[2kπ-π,2kπ](k∈Z)上是增函數(shù),在[2kπ,2kπ+π](k∈Z)上是減函數(shù) 在(-+kπ,+kπ)(k∈Z)上是增函數(shù) 周期性 周期是2kπ(k∈Z且k≠0),最小正周期是2π 周期是2kπ(k∈Z且k≠0),最小正周期是2π 周期是kπ(k∈Z且k≠0),最小正周期是π 對稱性 對稱軸是x=+kπ(k∈Z),對稱中心是(kπ,0)(k∈Z) 對稱軸是x=kπ(k

3、∈Z),對稱中心是(kπ+,0)(k∈Z) 對稱中心是(,0)(k∈Z) 常用結(jié)論 1.函數(shù)y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期T=,函數(shù)y=tan(ωx+φ)的最小正周期T=. 2.正弦曲線、余弦曲線相鄰兩對稱中心、相鄰兩對稱軸之間的距離是半周期,相鄰的對稱中心與對稱軸之間的距離是周期.正切曲線相鄰兩對稱中心之間的距離是半周期. 3.三角函數(shù)中奇函數(shù)一般可化為y=Asin ωx或y=Atan ωx的形式,偶函數(shù)一般可化為y=Acos ωx+b的形式. 二、教材衍化 1.若函數(shù)y=2sin 2x-1的最小正周期為T,最大值為A,則T=________,A

4、=________. 解析:最小正周期T==π,最大值A(chǔ)=2-1=1. 答案:π 1 2.下列關(guān)于函數(shù)y=4sin x,x∈[-π,π]的單調(diào)性的敘述,正確的是________(填序號). ①在[-π,0]上是增函數(shù),在[0,π]上是減函數(shù); ②在上是增函數(shù),在及上是減函數(shù); ③在[0,π]上是增函數(shù),在[-π,0]上是減函數(shù); ④在及上是增函數(shù),在上是減函數(shù). 解析:函數(shù)y=4sin x在和上是減少的,在上是增加的. 答案:② 3. y=tan 2x的定義域是________. 解析:由2x≠kπ+,k∈Z,得x≠+,k∈Z,所以y=tan 2x的定義域是. 答案:

5、 一、思考辨析 判斷正誤(正確的打“√”,錯誤的打“×”) (1)y=sin x在第一、第四象限是增函數(shù).(  ) (2)余弦函數(shù)y=cos x的對稱軸是y軸.(  ) (3)正切函數(shù)y=tan x在定義域內(nèi)是增函數(shù).(  ) (4)已知y=ksin x+1,x∈R,則y的最大值為k+1.(  ) (5)y=sin |x|是偶函數(shù).(  ) (6)若sin x>,則x>.(  ) 答案:(1)× (2)× (3)× (4)× (5)√ (6)× 二、易錯糾偏 (1)忽視y=Asin x(或y=Acos x)中A對函數(shù)單調(diào)性的影響; (2)忽視定義域的限制; (3)忽

6、視正切函數(shù)的周期; (4)不化為同名函數(shù)以及同一單調(diào)區(qū)間導(dǎo)致比較大小出錯. 1.函數(shù)y=1-2cos x的減區(qū)間為________. 解析:函數(shù)y=1-2cos x的減區(qū)間為函數(shù)y=cos x的增區(qū)間. 答案:[-π+2kπ,2kπ](k∈Z) 2.函數(shù)f(x)=3sin(2x-)在區(qū)間[0,]上的值域為________. 解析:當(dāng)x∈[0,]時,2x-∈[-,], 所以sin∈[-,1], 故3sin∈[-,3], 所以函數(shù)f(x)在區(qū)間[0,]上的值域是[-,3]. 答案:[-,3] 3.函數(shù)y=tan圖象的對稱中心是________. 解析:由x+=π,得x=π

7、-,k∈Z. 答案:(k∈Z) 4.cos 23°,sin 68°,cos 97°的大小關(guān)系是________. 解析:sin 68°=cos 22°, 又y=cos x在[0°,180°]上是減函數(shù), 所以sin 68°>cos 23°>cos 97°. 答案:sin 68°>cos 23°>cos 97° [學(xué)生用書P66]       三角函數(shù)的定義域(自主練透) 1.函數(shù)f(x)=-2tan的定義域是(  ) A. B. C. D. 解析:選D.由2x+≠kπ+,得x≠+(k∈Z). 2.函數(shù)y=lg sin x+的定義域為________

8、. 解析:要使函數(shù)有意義,則有 即 解得(k∈Z), 所以2kπ

9、π+≤x≤2kπ+,k∈Z}. 法三:sin x-cos x=sin(x-)≥0, 將x-視為一個整體,由正弦函數(shù)y=sin x的圖象和性質(zhì)可知2kπ≤x-≤π+2kπ(k∈Z), 解得2kπ+≤x≤2kπ+(k∈Z). 所以定義域為{x|2kπ+≤x≤2kπ+,k∈Z}. 答案:{x|2kπ+≤x≤2kπ+,k∈Z} 求三角函數(shù)定義域?qū)嶋H上是構(gòu)造簡單的三角不等式(組),常借助三角函數(shù)線或三角函數(shù)圖象來求解.        三角函數(shù)的值域(師生共研) (1)已知函數(shù)f(x)=cos xsin 2x,則函數(shù)f(x)的最大值為________. (2)已知函數(shù)

10、f(x)=(sin x+cos x)2+cos 2x,求f(x)在區(qū)間上的最大值和最小值. 【解】 (1)(換元法)因為y=f(x)=cos xsin 2x=2cos2 xsin x=2(1-sin2x)·sin x=2(sin x-sin3 x), 令t=sin x,則y=g(t)=2(t-t3),-1≤t≤1. 令g′(t)=2(1-3t2)=0,得t=±. 當(dāng)t∈時,g′(t)<0, g(t)在上是減函數(shù); 當(dāng)t∈時,g′(t)>0, g(t)在上是增函數(shù); 當(dāng)t∈時,g′(t)<0,g(t)在上是減函數(shù). 由此可知y=g(t)在t=時取得最大值,最大值為.故f(x)的

11、最大值為.故填. (2)因為f(x)=sin2x+cos2x+2sin xcos x+cos 2x=1+sin 2x+cos 2x=sin+1, 當(dāng)x∈時,∈. 由正弦函數(shù)y=sin x在上的圖象知, 當(dāng)2x+=,即x=時,f(x)取得最大值+1; 當(dāng)2x+=,即x=時,f(x)取最小值0. 綜上,f(x)在上的最大值為+1,最小值為0. 求解三角函數(shù)的值域(最值)常見到以下幾種類型 (1)形如y=asin x+bcos x+c的三角函數(shù)化為y=Asin(ωx+φ)+c的形式,再求值域(最值). (2)形如y=asin2x+bsin x+c的三角函數(shù),可先設(shè)sin x=t

12、,化為關(guān)于t的二次函數(shù)求值域(最值). (3)形如y=asin3x+bsin2x+csin x+d,類似于(2)進(jìn)行換元,然后用導(dǎo)數(shù)法求最值.  1.若函數(shù)f(x)=(1+tan x)cos x,-≤x≤,則f(x)的最大值為(  ) A.1    B.2     C.    D.+1 解析:選C.f(x)=(1+tan x)cos x=cos x+sin x=2sin.因為-≤x≤,所以-≤x+≤,故當(dāng)x=時,f(x)取最大值,故選C. 2.函數(shù)f(x)=sin2x+sin x cos x在區(qū)間上的最大值為,求m的最小值. 解:f(x)=-cos 2x+sin 2x =

13、sin+. 由題意知-≤x≤m. 所以-≤2x-≤2m-. 要使得f(x)在上的最大值為,則sin在上的最大值為1. 所以2m-≥,即m≥. 所以m的最小值為.       函數(shù)的單調(diào)性(多維探究) 角度一 求三角函數(shù)的單調(diào)區(qū)間 (1)(2019·高考全國卷Ⅱ)下列函數(shù)中,以為周期且在區(qū)間單調(diào)遞增的是(  ) A.f(x)=|cos 2x|    B.f(x)=|sin 2x| C.f(x)=cos|x| D.f(x)=sin|x| (2)函數(shù)y=sin x+cos x(x∈[0,])的增區(qū)間是________. 【解析】 (1)A中,函數(shù)f(x)=|cos 2

14、x|的周期為,當(dāng)x∈時,2x∈,函數(shù)f(x)是增加的,故A正確;B中,函數(shù)f(x)=|sin 2x|的周期為,當(dāng)x∈時,2x∈,函數(shù)f(x)是減少的,故B不正確;C中,函數(shù)f(x)=cos|x|=cos x的周期為2π,故C不正確;D中,f(x)=sin|x|=由正弦函數(shù)圖象知,在x≥0和x<0時,f(x)均以2π為周期,但在整個定義域上f(x)不是周期函數(shù),故D不正確.故選A.(2)因為y=sin x+cos x=sin(x+), 由2kπ-≤x+≤2kπ+(k∈Z), 解得2kπ-≤x≤2kπ+(k∈Z), 所以函數(shù)的增區(qū)間為[2kπ-,2kπ+](k∈Z), 又x∈[0,],所以

15、增區(qū)間為[0,]. 【答案】 (1)A (2)[0,] 三角函數(shù)單調(diào)性的求法 (1)形如y=Asin(ωx+φ)的函數(shù)的單調(diào)性問題,一般是將ωx+φ看成一個整體,再結(jié)合圖象利用y=sin x的單調(diào)性求解. (2)如果函數(shù)中自變量的系數(shù)為負(fù)值,要根據(jù)誘導(dǎo)公式把自變量系數(shù)化為正值,再確定其單調(diào)性.  角度二 根據(jù)單調(diào)性求參數(shù) (1)(一題多解)若f(x)=cos x-sin x在[0,a]是減函數(shù),則a的最大值是(  ) A.    B. C.    D.π (2)(一題多解)若f(x)=2sin ωx(ω>0)在區(qū)間[-,]上是增函數(shù),則ω的取值范圍是_______

16、_. 【解析】 (1)法一:f(x)=cos x-sin x=cos.當(dāng)x∈[0,a]時,x+∈,所以結(jié)合題意可知,a+≤π,即a≤,故所求a的最大值是.故選C. 法二:f′(x)=-sin x-cos x=-sin.于是,由題設(shè)得f′(x)≤0,即sin≥0在區(qū)間[0,a]上恒成立.當(dāng)x∈[0,a]時,x+∈,所以a+≤π,即a≤,故所求a的最大值是.故選C. (2)法一:因為x∈[-,](ω>0), 所以ωx∈[-,], 因為f(x)=2sin ωx在[-,]上是增函數(shù), 所以故0<ω≤. 法二:畫出函數(shù)f(x)=2sin ωx(ω>0)的圖象如圖所示. 要使f(x)在

17、[-,]上是增函數(shù),需 (ω>0),即0<ω≤. 法三:由-+2kπ≤ωx≤+2kπ(k∈Z)得 -+≤x≤+(k∈Z), 故f(x)的增區(qū)間是[-+,+](k∈Z), 由題意[-,]?[-+,+](k∈Z,ω>0), 從而有即0<ω≤. 【答案】 (1)C (2)(0,] 已知三角函數(shù)的單調(diào)區(qū)間求參數(shù)的取值范圍的三種方法 (1)子集法:求出原函數(shù)的相應(yīng)單調(diào)區(qū)間,由已知區(qū)間是所求某區(qū)間的子集,列不等式(組)求解; (2)反子集法:由所給區(qū)間求出整體角的范圍,由該范圍是某相應(yīng)正、余弦函數(shù)的某個單調(diào)區(qū)間的子集,列不等式(組)求解; (3)周期法:由所給區(qū)間的兩個端點到其相

18、應(yīng)對稱中心的距離不超過周期列不等式(組)求解. [提醒] 要注意求函數(shù)y=Asin(ωx+φ)的單調(diào)區(qū)間時ω的符號,若ω<0,那么一定先借助誘導(dǎo)公式將ω化為正數(shù).同時切莫漏掉考慮函數(shù)自身的定義域.  1.函數(shù)f(x)=tan(2x-)的增區(qū)間是(  ) A.[-,+](k∈Z) B.(-,+)(k∈Z) C.(kπ+,kπ+](k∈Z) D.(kπ-,kπ+](k∈Z) 解析:選B.由kπ-<2x-0,函數(shù)f(x)=sin(ωx+

19、)在(,π)上是減少的,則ω的取值范圍是________. 解析:法一:由0,得+<ωx+<ωπ+,又y=sin x的減區(qū)間為[2kπ+,2kπ+],k∈Z,所以k∈Z,解得4k+≤ω≤2k+,k∈Z.又由4k+-(2k+)≤0,k∈Z且2k+>0,k∈Z,得k=0,所以ω∈[,]. 法二:由已知=≥,所以0<ω≤2,又

20、cos x|,③y=cos,④y=tan中,最小正周期為π的所有函數(shù)的序號為(  ) A.①②③ B.①③④ C.②④ D.①③ (2)若函數(shù)f(x)=2tan的最小正周期T滿足1<T<2,則自然數(shù)k的值為________. 【解析】 (1)①y=cos|2x|=cos 2x,最小正周期為π; ②由圖象知y=|cos x|的最小正周期為π; ③y=cos的最小正周期T==π; ④y=tan的最小正周期T=,故選A. (2)由題意知1<<2, 所以k<π<2k. 即<k<π,又k∈N, 所以k=2或3. 【答案】 (1)A (2)2或3 (1)公式法:函數(shù)y=A

21、sin(ωx+φ)或y=Acos(ωx+φ)的最小正周期T=,y=Atan(ωx+φ)的最小正周期T=; (2)圖象法:利用三角函數(shù)圖象的特征求周期.  角度二 三角函數(shù)的奇偶性 已知函數(shù)f(x)=3sin(2x-+φ),φ∈(0,π). (1)若f(x)為偶函數(shù),則φ=________; (2)若f(x)為奇函數(shù),則φ=________. 【解析】 (1)因為f(x)=3sin(2x-+φ)為偶函數(shù), 所以-+φ=kπ+,k∈Z, 又因為φ∈(0,π),所以φ=. (2)因為f(x)=3sin(2x-+φ)為奇函數(shù), 所以-+φ=kπ,k∈Z, 又φ∈(0,π),

22、 所以φ=. 【答案】 (1) (2) 奇偶性的判斷方法:三角函數(shù)中奇函數(shù)一般可化為y=Asin ωx或y=Atan ωx的形式,而偶函數(shù)一般可化為y=Acos ωx+b的形式.  角度三 三角函數(shù)的對稱性 已知函數(shù)f(x)=asin x+cos x(a為常數(shù),x∈R)的圖象關(guān)于直線x=對稱,則函數(shù)g(x)=sin x+acos x的圖象(  ) A.關(guān)于點對稱 B.關(guān)于點對稱 C.關(guān)于直線x=對稱 D.關(guān)于直線x=對稱 【解析】 因為函數(shù)f(x)=asin x+cos x(a為常數(shù),x∈R)的圖象關(guān)于直線x=對稱, 所以f(0)=f,所以1=a+,a=, 所以

23、g(x)=sin x+cos x=sin(x+), 函數(shù)g(x)的對稱軸方程為x+=kπ+,k∈Z,即x=kπ+,k∈Z,當(dāng)k=0時,對稱軸為直線x=. 所以g(x)=sin x+acos x的圖象關(guān)于直線x=對稱. 【答案】 C (1)對于函數(shù)f(x)=Asin(ωx+φ),其圖象的對稱軸一定經(jīng)過函數(shù)圖象的最高點或最低點,對稱中心一定是函數(shù)的零點,因此在判斷直線x=x0或點(x0,0)是否是函數(shù)圖象的對稱軸或?qū)ΨQ中心時,可通過檢驗f(x0)的值進(jìn)行判斷. (2)函數(shù)圖象的對稱性與周期T之間有如下結(jié)論:①若函數(shù)圖象相鄰的兩條對稱軸分別為x=a與x=b,則最小正周期T=2|b-a|

24、;②若函數(shù)圖象相鄰的兩個對稱中心分別為(a,0),(b,0),則最小正周期T=2|b-a|;③若函數(shù)圖象相鄰的對稱中心與對稱軸分別為(a,0)與x=b,則最小正周期T=4|b-a|.  1. 函數(shù)y=sin的圖象與函數(shù)y=cos的圖象(  ) A.有相同的對稱軸但無相同的對稱中心 B.有相同的對稱中心但無相同的對稱軸 C.既有相同的對稱軸也有相同的對稱中心 D.既無相同的對稱中心也無相同的對稱軸 解析:選A.由2x-=kπ+,k∈Z,可解得函數(shù)y=sin的對稱軸為x=+,k∈Z.由x-=kπ,k∈Z,可解得函數(shù)y=cos的對稱軸為x=kπ+,k∈Z.當(dāng)k=0時,函數(shù)有相同的對

25、稱軸.由2x-=kπ,k∈Z,可解得函數(shù)y=sin的對稱中心為,k∈Z.由x-=kπ+,k∈Z,可解得函數(shù)y=cos的對稱中心為,k∈Z. 故兩個函數(shù)沒有相同的對稱中心,故選A. 2.已知函數(shù)f(x)=2sin(ωx+φ)的圖象經(jīng)過點(0,1),且關(guān)于直線x=對稱,則下列結(jié)論正確的是(  ) A.f(x)在上是減函數(shù) B.若x=x0是f(x)圖象的對稱軸,則一定有f′(x0)≠0 C.f(x)≥1的解集是,k∈Z D.f(x)圖象的一個對稱中心是 解析:選D.由f(x)=2sin(ωx+φ)的圖象經(jīng)過點(0,1),得sin φ=,又|φ|<,所以φ=,則f(x)=2sin.因為f

26、(x)的圖象關(guān)于直線x=對稱,所以存在m∈Z,使得ω+=mπ+,得ω=+(m∈Z),又0<ω<1,所以ω=,則f(x)=2sin.令2nπ+≤x+≤2nπ+,n∈Z,得4nπ+≤x≤4nπ+,n∈Z,故A錯誤;若x=x0是f(x)圖象的對稱軸,則f(x)在x=x0處取得極值,所以一定有f′(x0)=0,故B錯誤;由f(x)≥1得4kπ≤x≤4kπ+,k∈Z,故C錯誤;因為f=0,所以是其圖象的一個對稱中心,故D正確,選D.  三角函數(shù)中ω值的求法 一、利用三角函數(shù)的單調(diào)性求解 若函數(shù)f(x)=sin ωx(ω>0)在區(qū)間上是減少的,則ω的取值范圍是________. 【解析】 令+2

27、kπ≤ωx≤π+2kπ(k∈Z),得+≤x≤+,因為f(x)在上是減少的,所以得6k+≤ω≤4k+3.又ω>0,所以k≥0,又6k+<4k+3,得0≤k<,所以k=0.即≤ω≤3.  【答案】  根據(jù)正弦函數(shù)的減區(qū)間,確定函數(shù)f(x)的減區(qū)間,根據(jù)函數(shù)f(x)=sin ωx(ω>0)在區(qū)間上是減少的,建立不等式,即可求ω的取值范圍.  二、利用三角函數(shù)的對稱性求解 (1)已知函數(shù)f(x)=cos(ω>0)的一條對稱軸為x=,一個對稱中心為點,則ω有(  ) A.最小值2     B.最大值2 C.最小值1 D.最大值1 (2)若函數(shù)y=cos(ω∈N+)圖象的一個對稱中

28、心是,則ω的最小值為________. 【解析】 (1)因為函數(shù)的中心到對稱軸的最短距離是,兩條對稱軸間的最短距離是,所以中心到對稱軸x=間的距離用周期可表示為-=+(k∈N,T為周期),解得(2k+1)T=π,又T=,所以(2k+1)·=π,則ω=2(2k+1),當(dāng)k=0時,ω=2最?。蔬xA. (2)依題意得cos=0,則+=+kπ(k∈Z)?ω=6k+2(k∈Z),又ω∈N+,所以ω的最小值為=2. 【答案】 (1)A (2)2 三角函數(shù)兩條相鄰對稱軸或兩個相鄰對稱中心之間的“水平間隔”為,相鄰的對稱軸和對稱中心之間的“水平間隔”為,這就說明,我們可根據(jù)三角函數(shù)的對稱性來研究

29、其周期性,進(jìn)而可以研究“ω”的取值.值得一提的是,三角函數(shù)的對稱軸必經(jīng)過其圖象上的最高點(極大值)或最低點(極小值),函數(shù)f(x)=Asin(ωx+φ)的對稱中心就是其圖象與x軸的交點,這就說明,我們也可利用三角函數(shù)的極值點(最值點)、零點之間的“差距”來確定其周期,進(jìn)而可以確定“ω”的取值.  三、利用三角函數(shù)的最值求解 (1)已知函數(shù)f(x)=2sin ωx在區(qū)間上的最小值為-2,則ω的取值范圍是________. (2)已知f(x)=sin(ωx+)(ω>0),f=f(),且f(x)在區(qū)間內(nèi)有最小值無最大值,則ω=________. 【解析】 (1)顯然ω≠0. 若ω>0,

30、當(dāng)x∈時,-ω≤ωx≤ω,因為函數(shù)f(x)=2sin ωx在區(qū)間上的最小值為-2,所以-ω≤-,解得ω≥. 若ω<0,當(dāng)x∈時,ω≤ωx≤-ω,因為函數(shù)f(x)=2sin ωx在區(qū)間上的最小值為-2.所以ω≤-,解得ω≤-2. 綜上所述,符合條件的實數(shù)ω的取值范圍是(-∞,-2]∪. (2)因為f=f,而=,所以f(x)的圖象關(guān)于直線x=對稱,又f(x)在區(qū)間內(nèi)有最小值無最大值,所以f(x)min=f=sin=-1,所以+=kπ+,k∈Z,解得ω=4k+.再由f(x)在區(qū)間內(nèi)有最小值無最大值,得=T≥-,解得ω≤12,所以k=0,ω=. 【答案】 (1)(-∞,-2]∪ (2)

31、 利用三角函數(shù)的最值與對稱或周期的關(guān)系,可以列出關(guān)于ω的不等式,進(jìn)而求出ω的值或取值范圍.  [基礎(chǔ)題組練] 1.函數(shù)y=|cos x|的一個增區(qū)間是(  ) A.[-,]      B.[0,π] C.[π,] D.[,2π] 解析:選D.將y=cos x的圖象位于x軸下方的圖象關(guān)于x軸對稱翻折到x軸上方,x軸上方(或x軸上)的圖象不變,即得y=|cos x|的圖象(如圖).故選D. 2.設(shè)函數(shù)f(x)=cos,則下列結(jié)論錯誤的是(  ) A.f(x)的一個周期為-2π B.y=f(x)的圖象關(guān)于直線x=對稱 C.f(x+π)的一個零點為x= D.f(x)在上是

32、減少的 解析:選D.函數(shù)f(x)=cos的圖象可由y=cos x的圖象向左平移個單位得到,如圖可知,f(x)在上先減后增,D選項錯誤. 3.(2020·河北衡水第十三中學(xué)質(zhì)檢(四))同時滿足f(x+π)=f(x)與f=f的函數(shù)f(x)的解析式可以是(  ) A.f(x)=cos 2x     B.f(x)=tan x C.f(x)=sin x D.f(x)=sin 2x 解析:選D.由題意得所求函數(shù)的周期為π,且圖象關(guān)于x=對稱. A.f(x)=cos 2x的周期為π,而f=0不是函數(shù)的最值. 所以其圖象不關(guān)于x=對稱. B.f(x)=tan x的周期為π,但圖象不關(guān)于x

33、=對稱. C.f(x)=sin x的周期為2π,不合題意. D.f(x)=sin 2x的周期為π,且f=1為函數(shù)最大值, 所以D滿足條件,故選D. 4.(2020·河南六市聯(lián)考)已知函數(shù)f(x)=2sin(ω>0)的圖象與函數(shù)g(x)=cos(2x+φ)的圖象的對稱中心完全相同,則φ為(  ) A. B.- C. D.- 解析:選D.因為函數(shù)f(x)=2sin(ω>0)的圖象與函數(shù)g(x)=cos(2x+φ)的圖象的對稱中心完全相同, 所以ω=2,φ=-+2kπ(k∈Z), 即φ=-+2kπ(k∈Z), 因為|φ|<,所以φ=-,選D. 5.(2020·河南中原名校聯(lián)

34、盟聯(lián)考)已知函數(shù)f(x)=4sin(ωx+φ)(ω>0).在同一周期內(nèi),當(dāng)x=時取最大值,當(dāng)x=-時取最小值,則φ的值可能為(  ) A. B. C. D. 解析:選C.T==2=π,故ω=2,又2×+φ=2kπ+,k∈Z,所以φ=2kπ+,k∈Z,所以φ的值可能為.故答案為C. 6.函數(shù)f(x)=sin的減區(qū)間為________. 解析:由已知可得函數(shù)為f(x)=-sin,欲求函數(shù)f(x)的減區(qū)間,只需求y=sin的增區(qū)間. 由2kπ-≤2x-≤2kπ+(k∈Z). 得kπ-≤x≤kπ+(k∈Z). 故所求函數(shù)f(x)的減區(qū)間為 (k∈Z). 答案:(k∈Z) 7.

35、已知函數(shù)f(x)=2sin(ωx-)+1(x∈R)的圖象的一條對稱軸為x=π,其中ω為常數(shù),且ω∈(1,2),則函數(shù)f(x)的最小正周期為________. 解析:由函數(shù)f(x)=2sin(ωx-)+1(x∈R)的圖象的一條對稱軸為x=π,可得ωπ-=kπ+,k∈Z, 所以ω=k+,又ω∈(1,2),所以ω=,從而得函數(shù)f(x)的最小正周期為=. 答案: 8.已知函數(shù)f(x)=2sin的圖象的一個對稱中心為,其中ω為常數(shù),且ω∈(1,3).若對任意的實數(shù)x,總有f(x1)≤f(x)≤f(x2),則|x1-x2|的最小值是________. 解析:因為函數(shù)f(x)=2sin的圖象的一個

36、對稱中心為,所以ω+=kπ,k∈Z,所以ω=3k-1,k∈Z,由ω∈(1,3)得,ω=2.由題意得|x1-x2|的最小值為函數(shù)的半個周期,即==. 答案: 9.已知函數(shù)f(x)=(sin x+cos x)2+2cos2x-2. (1)求f(x)的增區(qū)間; (2)當(dāng)x∈時,求函數(shù)f(x)的最大值和最小值. 解:f(x)=sin 2x+cos 2x=sin. (1)令2kπ-≤2x+≤2kπ+,k∈Z, 則kπ-≤x≤kπ+,k∈Z. 故f(x)的增區(qū)間為,k∈Z. (2)因為x∈, 所以≤2x+≤, 所以-1≤sin≤ , 所以-≤f(x)≤1,所以當(dāng)x∈時,函數(shù)f(x

37、)的最大值為1,最小值為-. 10.已知函數(shù)f(x)=4sin(x-)cos x+. (1)求函數(shù)f(x)的最小正周期和增區(qū)間; (2)若函數(shù)g(x)=f(x)-m在[0,]上有兩個不同的零點x1,x2,求實數(shù)m的取值范圍,并計算tan(x1+x2)的值. 解:(1)f(x)=4sin(x-)cos x+=4(sin x-cos x)cos x+=2sin xcos x-2cos2x+=sin 2x-cos 2x=2sin(2x-). 所以函數(shù)f(x)的最小正周期為T=π. 由2kπ-≤2x-≤2kπ+(k∈Z),得kπ-≤x≤kπ+(k∈Z). 所以函數(shù)f(x)的增區(qū)間為[kπ

38、-,kπ+](k∈Z). (2)函數(shù)g(x)=f(x)-m在[0,]上有兩個不同的零點x1,x2,即函數(shù)y=f(x)與y=m在[0,]上的圖象有兩個不同的交點,在直角坐標(biāo)系中畫出函數(shù)y=f(x)=2sin(2x-)在[0,]上的圖象,如圖所示, 由圖象可知,當(dāng)且僅當(dāng)m∈[,2)時,方程f(x)=m有兩個不同的解x1,x2,且x1+x2=2×=, 故tan(x1+x2)=tan=-tan =-. [綜合題組練] 1.(2019·高考全國卷Ⅰ)關(guān)于函數(shù)f(x)=sin|x|+|sin x|有下述四個結(jié)論: ①f(x)是偶函數(shù); ②f(x)在區(qū)間遞增; ③f(x)在[-π,π]有

39、4個零點; ④f(x)的最大值為2. 其中所有正確結(jié)論的編號是(  ) A.①②④ B.②④ C.①④ D.①③ 解析:選C.通解:f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),所以f(x)為偶函數(shù),故①正確;當(dāng)

40、是①④.故選C. 優(yōu)解:因為f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),所以f(x)為偶函數(shù),故①正確,排除B;當(dāng)0),已知f(x)在[0,2π]有且僅有5個零點.下述四個結(jié)論: ①f(x)在(0,2π)有且僅有3個極大值點 ②f(x)在(0,2π)有且僅有2個極小值點

41、 ③f(x)在遞增 ④ω的取值范圍是 其中所有正確結(jié)論的編號是(  ) A.①④ B.②③ C.①②③ D.①③④ 解析:選D.如圖,根據(jù)題意知,xA≤2π0),f()+f()=0,且f(x)在區(qū)間(,)上是減少的,則ω=________. 解

42、析:因為f(x)=sin ωx+cos ωx=2sin(ωx+), 由+2kπ≤ωx+≤+2kπ,k∈Z, 得+≤x≤+,因為f(x)在區(qū)間(,)上遞減,所以(,)?[+,+],從而有, 解得12k+1≤ω≤,k∈Z, 所以1≤ω≤,因為f()+f()=0, 所以x==為f(x)=2sin(ωx+)的一個對稱中心的橫坐標(biāo), 所以ω+=kπ(k∈Z),ω=3k-1,k∈Z, 又1≤ω≤,所以ω=2. 答案:2 4.(2020·江贛十四校第二次聯(lián)考)如果圓x2+(y-1)2=m2至少覆蓋函數(shù)f(x)=2sin2- cos(m>0)的一個最大值點和一個最小值點,則m的取值范圍是__

43、______. 解析:化簡f(x)=2sin2-cos得f(x)=2sin+1,所以,函數(shù)f(x)的圖象靠近圓心(0,1)的最大值點為,最小值點為, 所以只需解得m≥. 答案: 5.已知函數(shù)f(x)=2sin2-cos 2x-1,x∈R. (1)求f(x)的最小正周期; (2)若h(x)=f(x+t)的圖象關(guān)于點對稱,且t∈(0,π),求t值; (3)當(dāng)x∈時,不等式|f(x)-m|<3恒成立,求實數(shù)m的取值范圍. 解:(1)因為f(x)=-cos-cos 2x =sin 2x-cos 2x =2 =2sin(2x-). 故f(x)的最小正周期為T==π. (2)由(

44、1)知h(x)=2sin. 令2×+2t-=kπ(k∈Z), 得t=+(k∈Z), 又t∈(0,π),故t=或. (3)當(dāng)x∈時,2x-∈, 所以f(x)∈[1,2]. 又|f(x)-m|<3, 即f(x)-30,函數(shù)f(x)=-2asin(2x+)+2a+b,當(dāng)x∈[0,]時,-5≤f(x)≤1. (1)求常數(shù)a,b的值; (2)設(shè)g(x)=f(x+)且lg g(x)>0,求g(x)的單調(diào)區(qū)間. 解:(1)因為x∈[0,], 所以2x+∈[,], 所以sin(

45、2x+)∈[-,1], 所以-2asin(2x+)∈[-2a,a], 所以f(x)∈[b,3a+b],又因為-5≤f(x)≤1, 所以b=-5,3a+b=1,因此a=2,b=-5. (2)由(1)得f(x)=-4sin(2x+)-1, g(x)=f(x+)=-4sin(2x+)-1 =4sin(2x+)-1, 又由lg g(x)>0,得g(x)>1, 所以4sin(2x+)-1>1, 所以sin(2x+)>, 所以2kπ+<2x+<2kπ+,k∈Z, 其中當(dāng)2kπ+<2x+≤2kπ+,k∈Z時, g(x)是增加的,即kπ

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!