影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高考數(shù)學(xué)一輪復(fù)習(xí) 矩陣與變換 第2講 參數(shù)方程教案 理 新人教版選修4-2

上傳人:xt****7 文檔編號(hào):105387264 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):5 大?。?18.52KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高考數(shù)學(xué)一輪復(fù)習(xí) 矩陣與變換 第2講 參數(shù)方程教案 理 新人教版選修4-2_第1頁
第1頁 / 共5頁
2022年高考數(shù)學(xué)一輪復(fù)習(xí) 矩陣與變換 第2講 參數(shù)方程教案 理 新人教版選修4-2_第2頁
第2頁 / 共5頁
2022年高考數(shù)學(xué)一輪復(fù)習(xí) 矩陣與變換 第2講 參數(shù)方程教案 理 新人教版選修4-2_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)一輪復(fù)習(xí) 矩陣與變換 第2講 參數(shù)方程教案 理 新人教版選修4-2》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)一輪復(fù)習(xí) 矩陣與變換 第2講 參數(shù)方程教案 理 新人教版選修4-2(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 2022年高考數(shù)學(xué)一輪復(fù)習(xí) 矩陣與變換 第2講 參數(shù)方程教案 理 新人教版選修4-2 【xx年高考會(huì)這樣考】 考查直線、圓和圓錐曲線的參數(shù)方程以及簡單的應(yīng)用問題. 【復(fù)習(xí)指導(dǎo)】 復(fù)習(xí)本講時(shí),應(yīng)緊緊抓住直線的參數(shù)方程、圓的參數(shù)方程、圓錐曲線的參數(shù)方程的建立以及各參數(shù)方程中參數(shù)的幾何意義,同時(shí)要熟練掌握參數(shù)方程與普通方程互化的一些方法. 基礎(chǔ)梳理 1.參數(shù)方程的意義 在平面直角坐標(biāo)系中,如果曲線上的任意一點(diǎn)的坐標(biāo)x,y都是某個(gè)變量的函數(shù)并且對(duì)于t的每個(gè)允許值,由方程組所確定的點(diǎn)M(x,y)都在這條曲線上,則該方程叫曲線的參數(shù)方程,聯(lián)系變數(shù)x,y的變數(shù)t是參變數(shù),簡稱參數(shù).相對(duì)于

2、參數(shù)方程而言,直接給出點(diǎn)的坐標(biāo)間關(guān)系的方程叫做普通方程. 2.常見曲線的參數(shù)方程的一般形式 (1)經(jīng)過點(diǎn)P0(x0,y0),傾斜角為α的直線的參數(shù)方程為(t為參數(shù)). 設(shè)P是直線上的任一點(diǎn),則t表示有向線段的數(shù)量. (2)圓的參數(shù)方程(θ為參數(shù)). (3)圓錐曲線的參數(shù)方程 橢圓+=1的參數(shù)方程為(θ為參數(shù)). 雙曲線-=1的參數(shù)方程為(φ為參數(shù)). 拋物線y2=2px的參數(shù)方程為(t為參數(shù)). 雙基自測 1. 極坐標(biāo)方程ρ=cos θ和參數(shù)方程(t為參數(shù))所表示的圖形分別是(  ). A.直線、直線 B.直線、圓 C.圓、圓 D.圓、直線 解析

3、 ∵ρcos θ=x,∴cos θ=代入到ρ=cos θ,得ρ=,∴ρ2=x,∴x2+y2=x表示圓. 又∵相加得x+y=1,表示直線. 答案 D 2.若直線(t為實(shí)數(shù))與直線4x+ky=1垂直,則常數(shù)k=________. 解析 參數(shù)方程所表示的直線方程為3x+2y=7,由此直線與直線4x+ky=1垂直可得-×=-1,解得k=-6. 答案 -6 3.二次曲線(θ是參數(shù))的左焦點(diǎn)的坐標(biāo)是________. 解析 題中二次曲線的普通方程為+=1左焦點(diǎn)為(-4,0). 答案 (-4,0) 4.(xx·廣州調(diào)研)已知直線l的參數(shù)方程為:(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=2sin

4、θ,則直線l與圓C的位置關(guān)系為________. 解析 將直線l的參數(shù)方程:化為普通方程得,y=1+2x,圓ρ=2sin θ的直角坐標(biāo)方程為x2+(y-)2=2,圓心(0,)到直線y=1+2x的距離為,因?yàn)樵摼嚯x小于圓的半徑,所以直線l與圓C相交. 答案 相交 5.(xx·廣東)已知兩曲線參數(shù)方程分別為(0≤θ<π)和(t∈R),它們的交點(diǎn)坐標(biāo)為________. 解析 由(0≤θ<π)得,+y2=1(y≥0)由(t∈R)得,x=y(tǒng)2,∴5y4+16y2-16=0. 解得:y2=或y2=-4(舍去). 則x=y(tǒng)2=1又θ≥0,得交點(diǎn)坐標(biāo)為. 答案  考向一 參數(shù)方程與普

5、通方程的互化 【例1】?把下列參數(shù)方程化為普通方程: (1) (2) [審題視點(diǎn)] (1)利用平方關(guān)系消參數(shù)θ; (2)代入消元法消去t. 解 (1)由已知由三角恒等式cos2 θ+sin2θ=1, 可知(x-3)2+(y-2)2=1,這就是它的普通方程. (2)由已知t=2x-2,代入y=5+t中, 得y=5+(2x-2),即x-y+5-=0就是它的普通方程. 參數(shù)方程化為普通方程:化參數(shù)方程為普通方程的基本思路是消去參數(shù),常用的消參方法有代入消去法、加減消去法、恒等式(三角的或代數(shù)的)消去法,參數(shù)方程通過代入消元或加減消元消去參數(shù)化為普通方程,不要忘了參數(shù)的范圍.

6、【訓(xùn)練1】 (xx·陜西)參數(shù)方程(α為參數(shù))化成普通方程為________. 解析 由得 ①2+②2得:x2+(y-1)2=1. 答案 x2+(y-1)2=1 考向二 直線與圓的參數(shù)方程的應(yīng)用 【例2】?已知圓C:(θ為參數(shù))和直線l:(其中t為參數(shù),α為直線l的傾斜角). (1)當(dāng)α=時(shí),求圓上的點(diǎn)到直線l距離的最小值; (2)當(dāng)直線l與圓C有公共點(diǎn)時(shí),求α的取值范圍. [審題視點(diǎn)] (1)求圓心到直線l的距離,這個(gè)距離減去圓的半徑即為所求;(2)把圓的參數(shù)方程化為直角坐標(biāo)方程,將直線的參數(shù)方程代入得關(guān)于參數(shù)t的一元二次方程,這個(gè)方程的Δ≥0. 解 (1)當(dāng)α=時(shí),直線

7、l的直角坐標(biāo)方程為x+y-3=0,圓C的圓心坐標(biāo)為(1,0),圓心到直線的距離d==,圓的半徑為1,故圓上的點(diǎn)到直線l距離的最小值為-1. (2)圓C的直角坐標(biāo)方程為(x-1)2+y2=1,將直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得t2+2(cos α+sin α)t+3=0,這個(gè)關(guān)于t的一元二次方程有解,故Δ=4(cos α+sin α)2-12≥0,則sin2≥,即sin≥或sin ≤-.又0≤α<π,故只能sin≥,即≤α+≤,即≤α≤. 如果問題中的方程都是參數(shù)方程,那就要至少把其中的一個(gè)化為直角坐標(biāo)方程. 【訓(xùn)練2】 已知直線l的參數(shù)方程為(參數(shù)t∈R),圓C的參數(shù)方程為(

8、參數(shù)θ∈[0,2π]),求直線l被圓C所截得的弦長. 解 由消參數(shù)后得普通方程為2x+y-6=0, 由消參數(shù)后得普通方程為(x-2)2+y2=4,顯然圓心坐標(biāo)為(2,0),半徑為2.由于圓心到直線2x+y-6=0的距離為d==, 所以所求弦長為2 =. 考向三 圓錐曲線的參數(shù)方程的應(yīng)用 【例3】?求經(jīng)過點(diǎn)(1,1),傾斜角為135°的直線截橢圓+y2=1所得的弦長. [審題視點(diǎn)] 把直線方程用參數(shù)表示,直接與橢圓聯(lián)立,利用根與系數(shù)的關(guān)系及弦長公式可解決. 解 由條件可知直線的參數(shù)方程是(t為參數(shù)),代入橢圓方程可得+2=1, 即t2+3t+1=0.設(shè)方程的兩實(shí)根分別為t1、t2

9、,則由二次方程的根與系數(shù)的關(guān)系可得則直線截橢圓的弦長是|t1-t2|== = . 普通方程化為參數(shù)方程:化普通方程為參數(shù)方程的基本思路是引入?yún)?shù),即選定合適的參數(shù)t,先確定一個(gè)關(guān)系x=f(t)(或y=φ(t)),再代入普通方程F(x,y)=0,求得另一關(guān)系y=φ(t)(或x=f(t)).一般地,常選擇的參數(shù)有角、有向線段的數(shù)量、斜率,某一點(diǎn)的橫坐標(biāo)(或縱坐標(biāo)).普通方程化為參數(shù)方程需要引入?yún)?shù),選擇的參數(shù)不同,所得的參數(shù)方程也不一樣. 【訓(xùn)練3】 (xx·南京模擬)過點(diǎn)P(-3,0)且傾斜角為30°的直線和曲線(t為參數(shù))相交于A、B兩點(diǎn),求線段AB的長. 解 直線的參數(shù)方程為

10、(s為參數(shù)), 又曲線(t為參數(shù))可以化為x2-y2=4,將直線的參數(shù)方程代入上式,得s2-6s+10=0, 設(shè)A、B對(duì)應(yīng)的參數(shù)分別為s1,s2.∴s1+s2=6,s1s2=10.∴|AB|=|s1-s2|==2. 如何解決極坐標(biāo)方程與參數(shù)方程的綜合問題 從近兩年的新課標(biāo)高考試題可以看出,對(duì)參數(shù)方程的考查重點(diǎn)是直線的參數(shù)方程、圓的參數(shù)方程和圓錐曲線的參數(shù)方程的簡單應(yīng)用,特別是利用參數(shù)方程解決弦長和最值等問題,題型為填空題和解答題. 【示例】? (本題滿分10分)(xx·新課標(biāo)全國)在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)). M是C1上的動(dòng)點(diǎn),P點(diǎn)滿足=2,P點(diǎn)的軌

11、跡為曲線C2. (1)求C2的方程; (2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線θ=與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|. 第(1)問:利用代入法;第(2)問把曲線C1、曲線C2均用極坐標(biāo)表示,再求射線θ=與曲線C1、C2的交點(diǎn)A、B的極徑即可. [解答示范] (1)設(shè)P(x,y),則由條件知M. 由于M點(diǎn)在C1上,所以即 從而C2的參數(shù)方程為(α為參數(shù)).(5分) (2)曲線C1的極坐標(biāo)方程為ρ=4sin θ,曲線C2的極坐標(biāo)方程為ρ=8sin θ. 射線θ=與C1的交點(diǎn)A的極徑為ρ1=4sin , 射線θ=與C2的交點(diǎn)B的極徑為ρ2=8sin . 所以|AB|=|ρ2-ρ1|=2.(10分) 很多自主命題的省份在選考坐標(biāo)系與參數(shù)方程中的命題多以綜合題的形式命題,而且通常將極坐標(biāo)方程、參數(shù)方程相結(jié)合,以考查考生的轉(zhuǎn)化與化歸的能力. 【試一試】 (xx·江蘇)在平面直角坐標(biāo)系xOy中,求過橢圓(φ為參數(shù))的右焦點(diǎn),且與直線(t為參數(shù))平行的直線的普通方程. [嘗試解答] 由題設(shè)知,橢圓的長半軸長a=5,短半軸長b=3,從 而c==4,所以右焦點(diǎn)為(4,0).將已知直線的參數(shù)方程化為普通方程:x-2y+2=0.故所求直線的斜率為,因此其方程為y=(x-4),即x-2y-4=0.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!