2022年高考數(shù)學(xué)總復(fù)習(xí) 專題一 選擇、填空題對點練教案 理 新人教A版
《2022年高考數(shù)學(xué)總復(fù)習(xí) 專題一 選擇、填空題對點練教案 理 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)總復(fù)習(xí) 專題一 選擇、填空題對點練教案 理 新人教A版(67頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)總復(fù)習(xí) 專題一 選擇、填空題對點練教案 理 新人教A版 1.集合的基本概念 (1)集合中元素的特性:確定性、互異性、無序性. (2)集合的表示方法:列舉法、描述法、圖示法. (3)子集、真子集、空集、集合相等的概念. 2.集合的基本運(yùn)算 (1)交集:A∩B={x|x∈A,且x∈B}. (2)并集:A∪B={x|x∈A,或x∈B}. (3)補(bǔ)集:?UA={x|x∈U,且x?A}. 3.運(yùn)算性質(zhì)及重要結(jié)論 (1)A∪A=A,A∪?=A,A∪B=B∪A. (2)A∩A=A,A∩?=?,A∩B=B∩A. (3)A∩(?UA)=?,A∪(?UA)=U. (4)
2、A∩B=A?A?B,A∪B=A?B?A. 4.全稱命題與特稱命題 (1)全稱命題p:?x∈M,p(x),它的否定綈p:?x0∈M,綈p(x0). (2)特稱命題p:?x0∈M,p(x0),它的否定綈p:?x∈M,綈p(x). 5.四種命題 用p,q表示一個命題的條件和結(jié)論,綈p和綈q分別表示條件和結(jié)論的否定,那么原命題:若p則q;逆命題:若q則p;否命題:若綈p則綈q;逆否命題:若綈q則綈p. [覽規(guī)律技巧] 1.研究集合問題,一定要抓住元素,看元素應(yīng)滿足的屬性,對于含有字母的集合,在求出字母的值后,要注意檢驗集合的元素是否滿足互異性. 2.解決集合的運(yùn)算時,一般先運(yùn)算括號內(nèi)的
3、部分.當(dāng)集合是用列舉法表示的數(shù)集時,可以通過列舉集合的元素進(jìn)行運(yùn)算;當(dāng)集合是用不等式形式表示時,可運(yùn)用數(shù)軸求解.
3.判斷命題真假的方法
(1)等價轉(zhuǎn)化法:當(dāng)一個命題的真假不好判斷時,可轉(zhuǎn)化為判斷它的逆否命題的真假.
(2)特值法:當(dāng)判定一個全稱命題為假或一個特稱(存在性)命題為真時,可代入特值進(jìn)行驗證.
注意:判斷有關(guān)不等式的充分條件和必要條件問題時,記住“小范圍”?“大范圍”.
[練經(jīng)典考題]
一、選擇題
1.設(shè)全集為R,集合A={x∈R|x2<4},B={x|-1 4、
C.(-2,-1] D.(-2,2)
解析:選C 由x2<4,得-2 5、},B={x|0 6、p不是q的充分條件.當(dāng)a=b=c=0時,有b=成立,但此時a,b,c不成等比數(shù)列,所以p不是q的必要條件.所以p是q的既不充分也不必要條件.
5.命題“存在x0∈R,x+x0+1≤0”的否定是( )
A.不存在x0∈R,x+x0+1≤0
B.存在x0∈R,x+x0+1>0
C.對任意的x∈R,x3+x+1>0
D.對任意的x∈R,x3+x+1≤0
解析:選C “存在x0∈R,x+x0+1≤0”的否定是“對任意的x∈R,x3+x+1>0”.
6.設(shè)集合A={x|x=,k∈N},B={x|x≤5,x∈Q},則A∩B=( )
A.{1,2,5} B 7、.{1,2,4,5}
C.{1,4,5} D.{1,2,4}
解析:選B 當(dāng)k=0時,x=1;當(dāng)k=1時,x=2;當(dāng)k=5時,x=4;當(dāng)k=8時,x=5.所以A∩B={1,2,4,5}.
7.已知集合M=,N={y|y=3x2+1,x∈R},則M∩N=( )
A.? B.{x|x≥1}
C.{x|x>1} D.{x|x≥1或x<0}
解析:選C 由≥0得∴x>1或x≤0,∴M={x|x>1或x≤0},又∵N={y|y≥1},∴M∩N={x|x>1}.
8.命題“若a,b都是偶數(shù), 8、則a+b是偶數(shù)”的否命題是( )
A.若a,b都是偶數(shù),則a+b不是偶數(shù)
B.若a,b不都是偶數(shù),則a+b不是偶數(shù)
C.若a,b都不是偶數(shù),則a+b不是偶數(shù)
D.若a,b不都是偶數(shù),則a+b是偶數(shù)
解析:選B 因為“都是”的否定是“不都是”,所以“若a,b都是偶數(shù),則a+b是偶數(shù)”的否命題是“若a,b不都是偶數(shù),則a+b不是偶數(shù)”.
9.已知命題p:函數(shù)y=e|x-1|的圖象關(guān)于直線x=1對稱,命題q:函數(shù)y=cos的圖象關(guān)于點對稱,則下列命題中的真命題為( )
A.p∧q B.p∧(綈q)
C.(綈p)∧q 9、 D.(綈p)∨(綈q)
解析:選A 易知函數(shù)y=e|x-1|的圖象關(guān)于直線x=1對稱是真命題;將x=代入y=cos中,得y=0,故函數(shù)y=cos的圖象關(guān)于點對稱是真命題.p和q都為真,所以p∧q為真命題.
10.已知命題p:當(dāng)a>1時,函數(shù)y=log(x2+2x+a)的定義域為R;命題q:“a=3”是“直線ax+2y=0與直線2x-3y=3垂直”的充要條件,則以下結(jié)論正確的是( )
A.p或q為真命題
B.p且q為假命題
C.p且綈q為真命題
D.綈p或q為假命題
解析:選A 當(dāng)a>1時,一元二次方程x2+2x+a=0的判別式Δ=4-4a<0,則x2+2x+a>0對任意x∈R 10、恒成立,故函數(shù)y=log(x2+2x+a)的定義域為R.故命題p是真命題;直線ax+2y=0與直線2x-3y=3垂直等價于a×2+2×(-3)=0,解得a=3,故“a=3”是“直線ax+2y=0與直線2x-3y=3垂直”的充要條件,故命題q是真命題.所以p或q為真命題,p且q為真命題,p且綈q為假命題,綈p或q為真命題.
11.設(shè)集合A={x|x2+2x-3>0},集合B={x|x2-2ax-1≤0,a>0}.若A∩B中恰含有一個整數(shù),則實數(shù)a的取值范圍是( )
A. B.
C. D.(1,+∞)
解析:選B A={x|x2+ 11、2x-3>0}={x|x>1或x<-3},因為函數(shù)y=f(x)=x2-2ax-1的圖象的對稱軸為x=a>0,f(0)=-1<0,根據(jù)對稱性可知要使A∩B中恰含有一個整數(shù),則這個整數(shù)為2,所以有f(2)≤0且f(3)>0,即所以即≤a<.
12.下列命題中正確的是( )
A.命題“?x∈R,x2-x≤0”的否定是“?x0∈R,x-x0≥0”
B.命題“若xy=0,則x=0”的否命題為“若xy=0,則x≠0”
C.?m∈R,使f(x)=(m-1)·xm2-4m+3是冪函數(shù),且在(0,+∞)上單調(diào)遞減
D.命題“若cos x=cos y,則x=y(tǒng)”的逆否命題為真命題
解析:選C A中命 12、題的否定是“?x0∈R,x-x0>0”,所以A錯誤;B中“若xy=0,則x=0”的否命題為“若xy≠0,則x≠0”,所以B錯誤;C中m=2時成立;D中“若cos x=cos y,則x=y(tǒng)+2kπ或x=-y+2kπ,k∈Z”,所以D錯誤.
二、填空題
13.已知集合A={x|y=},B={y|y=3x+1},則A∩B=________.
解析:A=(-∞,0]∪[3,+∞),B=(1,+∞),所以A∩B=[3,+∞).
答案:[3,+∞)
14.已知命題p:?x∈[1,2],x2-a≥0,命題q:?x0∈R,x+2ax0+2-a=0,若命題“p且q”是真命題,則實數(shù)a的取值范圍是___ 13、_____.
解析:由x2-a≥0,得a≤x2,x∈[1,2],所以a≤1.要使q成立,則有Δ=4a2-4(2-a)≥0,即a2+a-2≥0,解得a≥1或a≤-2.因為命題“p且q”是真命題,則p,q同時為真,即即a≤-2或a=1.
答案:(-∞,-2]∪{1}
15.當(dāng)兩個集合中一個集合為另一集合的子集時稱這兩個集合構(gòu)成“全食”,當(dāng)兩個集合有公共元素,但互不為對方子集時稱這兩個集合構(gòu)成“偏食”.對于集合A=,B={x|ax2=1,a≥0},若A與B構(gòu)成“全食”或構(gòu)成“偏食”,則a的取值集合為________.
解析:因為B={x|ax2=1,a≥0},所以若a=0,則B為空集,滿足B 14、?A,此時A與B構(gòu)成“全食”.若a>0,則B={x|ax2=1,a≥0}=,由題意知=1或=,解得a=1或a=4.此時A與B構(gòu)成“偏食”.故a的取值集合為{0,1,4}.
答案:{0,1,4}
16.若f(x)是R上的增函數(shù),且f(-1)=-4,f(2)=2,設(shè)P={x|f(x+t)+1<3},Q={x|f(x)<-4},若“x∈P”是“x∈Q”的充分不必要條件,則實數(shù)t的取值范圍是________.
解析:P={x|f(x+t)+1<3}={x|f(x+t)<2}={x|f(x+t) 15、所以P={x|x+t<2}={x|x<2-t},Q={x|x<-1},要使“x∈P”是“x∈Q”的充分不必要條件,則有2-t<-1,即t>3.
答案:(3,+∞)
函數(shù)的圖象、性質(zhì)及應(yīng)用
[記概念公式]
1.指數(shù)與對數(shù)式的運(yùn)算公式
am·an=am+n;(am)n=amn;loga(MN)=logaM+logaN;loga=logaM-logaN;logaMn=nlogaM;alogaN=N;logaN=(a>0且a≠1,b>0且b≠1,M>0,N>0).
2.函數(shù)的零點與方程根的關(guān)系
3.零點存在性定理
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線, 16、并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b)使得f(c)=0,這個c也就是方程f(x)=0的根.
[覽規(guī)律技巧]
1.函數(shù)單調(diào)性和奇偶性的重要結(jié)論
(1)當(dāng)f(x),g(x)同為增(減)函數(shù)時,函數(shù)f(x)+g(x)為增(減)函數(shù).
(2)奇函數(shù)在對稱的兩個區(qū)間上有相同的單調(diào)性,偶函數(shù)在對稱的兩個區(qū)間上有相反的單調(diào)性.
(3)f(x)為奇函數(shù)?f(x)的圖象關(guān)于原點對稱,f(x)為偶函數(shù)?f(x)的圖象關(guān)于y軸對稱.
(4)偶函數(shù)的和、差、積、商是偶函數(shù);奇函數(shù)的和、差是奇函數(shù),積、商是偶函數(shù);奇函數(shù)與偶函數(shù)的積、商是奇函數(shù).
17、
2.函數(shù)的周期性
(1)若函數(shù)f(x)滿足f(x+a)=f(x-a),則f(x)為周期函數(shù),2a是它的一個周期.
(2)設(shè)f(x)是R上的偶函數(shù),且圖象關(guān)于直線x=a(a≠0)對稱,則f(x)是周期函數(shù),2a是它的一個周期.
(3)設(shè)f(x)是R上的奇函數(shù),且圖象關(guān)于直線x=a(a≠0)對稱,則f(x)是周期函數(shù),4a是它的一個周期.
3.函數(shù)圖象的對稱性
(1)若函數(shù)y=f(x)滿足f(a+x)=f(a-x),即f(x)=f(2a-x),則f(x)的圖象關(guān)于直線x=a對稱.
(2)若函數(shù)y=f(x)滿足f(a+x)=-f(a-x),即f(x)=-f(2a-x),則f(x)的圖象 18、關(guān)于點(a,0)對稱.
(3)若函數(shù)y=f(x)滿足f(a+x)=f(b-x),則函數(shù)f(x)的圖象關(guān)于直線x=對稱.
4.利用指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)比較大小
(1)底數(shù)相同,指數(shù)不同的冪用指數(shù)函數(shù)的單調(diào)性進(jìn)行比較;底數(shù)相同,真數(shù)不同的對數(shù)值用對數(shù)函數(shù)的單調(diào)性進(jìn)行比較.
(2)底數(shù)不同、指數(shù)也不同,或底數(shù)不同、真數(shù)也不同的兩個數(shù),可以引入中間量或結(jié)合圖象進(jìn)行比較.
[練經(jīng)典考題]
一、選擇題
1.已知函數(shù)f(x)=則f[f(2)]=( )
A. B. C.2 D. 19、4
解析:選A 因為f(2)=-,所以f[f(2)]=f(-)=4=.
2.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( )
A.y= B.y=cos x
C.y=3x D.y=ln|x|
解析:選D 利用排除法求解.函數(shù)y=,y=3x都是非奇非偶函數(shù),排除A和C;函數(shù)y=cos x,x∈(0,+∞)不單調(diào),排除B;函數(shù)y=ln|x|是偶函數(shù),且在(0,+∞)上單調(diào)遞增,故選D.
3.設(shè)a,b∈R,若函數(shù)f(x)=(x∈R)是奇函數(shù),則a+b=( )
A.-1 B.0 20、 C.1 D.2
解析:選B 因為函數(shù)f(x)=(x∈R)是奇函數(shù),所以f(0)==0,得a=-1,又因為f(1)+f(-1)=0,所以+=0,解得b=1,經(jīng)檢驗,符合題意.故a+b=0.
4.已知定義域為R的函數(shù)f(x)的圖象關(guān)于原點對稱.當(dāng)x>0時,f(x)=ln x,則f(-e)=( )
A.-e B.e
C.1 D.-1
解析:選D 由于函數(shù)f(x)的圖象關(guān)于原點對稱,故f(x)為奇函數(shù),故f(-e)=-f(e)=
-ln e=-1.
5.已知函數(shù)f(x)=4-x2,y=g(x)是 21、定義在R上的奇函數(shù),當(dāng)x>0時,g(x)=log2x,則函數(shù)f(x)·g(x)的大致圖象為( )
解析:選D 因為函數(shù)f(x)=4-x2為偶函數(shù),y=g(x)是定義在R上的奇函數(shù),所以函數(shù)f(x)·g(x)為奇函數(shù),其圖象關(guān)于原點對稱,所以排除A,B.當(dāng)x>2時,g(x)=log2x>0,f(x)=4-x2<0,所以此時f(x)·g(x)<0,排除C.
6.已知函數(shù)f(x)=ln x,則函數(shù)g(x)=f(x)-f′(x)的零點所在的區(qū)間是( )
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
解析:選B 因為f′ 22、(x)=,所以g(x)=f(x)-f′(x)=ln x-.因為g(1)=ln 1-1=-1<0,g(2)=ln 2->0,所以函數(shù)g(x)的零點所在的區(qū)間為(1,2).
7.函數(shù)f(x)=(x+1)ln x-1的零點有( )
A.0個 B.1個 C.2個 D.3個
8.若當(dāng)x∈R時,函數(shù)f(x)=a|x|始終滿足0<|f(x)|≤1,則函數(shù)y=loga的圖象大致為( )
解析:選B 因為當(dāng)x∈R時,函數(shù)f(x)=a|x|始終滿足0 23、,且對任意x∈R都有f(x+4)=f(x)+f(2),則f(2 014)=( )
A.0 B.3 C.4 D.6
解析:選A 依題意得f(-2+4)=f(-2)+f(2)=f(2),即2f(2)=f(2),f(2)=0,f(x+4)=f(x),故f(x)是以4為周期的周期函數(shù),2 014=4×503+2,因此f(2 014)=f(2)=0.
10.奇函數(shù)f(x)滿足f(x+2)=-f(x),當(dāng)x∈(0,1)時,f(x)=3x+,則f(log354)=( )
A.-2 B.- C. 24、 D.2
解析:選A ∵f[(x+2)+2]=-f(x+2)=f(x),∴f(x)是以4為周期的周期函數(shù).又∵f(log354)=f=f=f=-f,易知0 25、t=m+,log2t=log2m+1,t=2m,則t=m+=2m,解得m=.又n=log2m+2,2n-2=m,2n=4m,所以m·2n=4m2=4×()2=12.
12.函數(shù)f(x)=cos πx與函數(shù)g(x)=|log2|x-1||的圖象所有交點的橫坐標(biāo)之和為( )
A.2 B.4 C.6 D.8
解析:選B 將兩個函數(shù)的圖象同時向左平移1個單位,得到函數(shù)y=f(x+1)=cos π(x+1)=cos(πx+π)=-cos πx,y=g(x+1)=|log2|x||的圖象,則此時兩個新函數(shù)均為偶函數(shù).在同一坐標(biāo)系下分別作出函 26、數(shù)y=f(x+1)=-cos πx 和y=g(x+1)=|log2|x||的圖象如圖,可知有四個交點,兩兩關(guān)于y軸對稱,所以此時所有交點的橫坐標(biāo)之和為0,所以函數(shù)f(x)=cos πx與函數(shù)g(x)=|log2|x-1||的圖象所有交點的橫坐標(biāo)之和為4.
二、填空題
13.已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,則滿足f(2x-1) 27、.
答案:∪
14.已知函數(shù)f(x)=ln x+3x-8的零點x0∈[a,b],且b-a=1,a,b∈N*,則a+b=________.
解析:由于函數(shù)f(x)=ln x+3x-8,故函數(shù)f(x)在(0,+∞)上是增函數(shù),又a,b∈N*,f(2)=ln 2+6-8=ln 2-2<0.f(3)=ln 3+9-8=ln 3+1>0,且b-a=1,∴x0∈[2,3],即a=2,b=3,∴a+b=5.
答案:5
15.已知函數(shù)f(x)=ln(1+x)-ln(1-x),有如下結(jié)論:
①?x∈(-1,1),f(-x)=f(x);②?x∈(-1,1),f(-x)=-f(x);③?x∈(-1,1) 28、,f(x)為增函數(shù);④若 f(a)=ln 2,則a=.
其中正確結(jié)論的序號是________.(寫出所有正確結(jié)論的序號)
解析:f(x)=ln(1+x)-ln(1-x)=ln,f(-x)+f(x)=ln+ln=ln 1=0,∴f(-x)=-f(x),①錯誤,②正確;f(x)=ln=ln-1+,利用復(fù)合函數(shù)的單調(diào)性可知f(x)為增函數(shù),③正確;∵f(a)=ln=ln 2,∴=2,∴a=,④正確.
答案:②③④
16.已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時,有f(x+1)=-f(x),且當(dāng)x∈[0,1)時,f(x)=log2(x+1),給出下列命題:
①f(2 013)+f(-2 29、014)的值為0;
②函數(shù)f(x)在定義域上是周期為2的周期函數(shù);
③直線y=x與函數(shù)f(x)的圖象有1個交點;
④函數(shù)f(x)的值域為(-1,1).
其中正確的命題序號有________.
解析:結(jié)合函數(shù)圖象逐個判斷.當(dāng)x∈[1,2)時,x-1∈[0,1),f(x)=-f(x-1)=-log2x,且x≥0時,f(x)=f(x+2),又f(x)是R上的偶函數(shù),作出函數(shù)f(x)的部分圖象如圖,由圖可知,②錯誤,③④都正確;f(2 013)=f(1)=-f(0)=0,f(2 014)=f(0)=0,所以f(2 013)+f(-2 014)=0,①正確,故正確的命題序號是①③④.
答 30、案:①③④
導(dǎo)數(shù)的運(yùn)算及簡單應(yīng)用
[記概念公式]
1.求導(dǎo)公式
(1)(sin x)′=cos x;
(2)(cos x)′=-sin x;
(3)(ln x)′=;(logax)′=;
(4)(ex)′=ex;(ax)′=axln a.
2.導(dǎo)數(shù)的四則運(yùn)算法則
(1)[u(x)±v(x)]′=u′(x)±v′(x).
(2)[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x).
(3)′=(v(x)≠0).
3.導(dǎo)數(shù)與極值
函數(shù)f(x)在x0處的導(dǎo)數(shù)f′(x0)=0且f′(x)在x0附近“左正右負(fù)”?f(x)在x0處取極大值;函數(shù)f(x 31、)在x0處的導(dǎo)數(shù)f′(x0)=0且f′(x)在x0附近“左負(fù)右正”?f(x)在x0處取極小值.
[覽規(guī)律技巧]
“切點”的應(yīng)用規(guī)律
(1)若題目中沒有給出“切點”,就必須先設(shè)出切點.
(2)切點的三種情況:切點在切線上;切點在曲線上;切點處的導(dǎo)數(shù)值等于切線的斜率.
[練經(jīng)典考題]
一、選擇題
1.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足關(guān)系式f(x)=x2+3xf′(2)+ln x,則f′(2)的值等于( )
A.2 B.-2 C. D.-
解析:選D ∵f(x)=x2+3xf′(2)+ln x,∴f′(x)=2x+3f 32、′(2)+,所以f′(2)=2×2+3f′(2)+,解得f′(2)=-.
2.已知函數(shù)f(x)=2-2ln x,則曲線y=f(x)在點(1,f(1))處的切線方程是( )
A.2x+y-2=0 B.2x-y-2=0
C.x+y-2=0 D.y=0
解析:選B 函數(shù)f(x)=2-2ln x,f(1)=0,f′(x)=2-.曲線y=f(x)在點(1,f(1))處的切線的斜率為f′(1)=2.從而曲線y=f(x)在點(1,f(1)) 處的切線方程為y-0=2(x-1),即2x-y-2=0.
3.若曲線f(x)=x3+x2+mx的所有切線中,只有一 33、條與直線x+y-3=0垂直,則實數(shù)m的值等于( )
A.0 B.2 C.0或2 D.3
解析:選B f′(x)=x2+2x+m,直線x+y-3=0的斜率為-1,由題意知關(guān)于x的方程x2+2x+m=1,即(x+1)2=2-m有且僅有一解,所以m=2.
4.dx=( )
A.2ln 3+4 B.2ln 3 C.4 D.ln 3
解析:選A dx=[2ln(x+1)+x2]=2ln 3+4.
5.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=a(x+b)2+c的圖象如圖所示,則函數(shù)f(x) 的 34、圖象可能是( )
解析:選D 由導(dǎo)函數(shù)圖象可知,當(dāng)x<0時,f′(x)<0,函數(shù)f(x)單調(diào)遞減,排除A,B.當(dāng)0 35、象如圖所示,f′(x)是f(x)的導(dǎo)函數(shù),則下列數(shù)值排列正確的是( )
A.0 36、. D.
解析:選C f′(x)=(2x-2a)ex+(x2-2ax)ex=[x2+(2-2a)x-2a]ex,由題意當(dāng)x∈[-1,1]時,f′(x)≤0恒成立,即x2+(2-2a)x-2a≤0恒成立,
即解得a≥.
9.定義在R上的函數(shù)f(x)滿足f(1)=1,且對任意x∈R都有f′(x)<,則不等式f(x2)>的解集為( )
A.(1,2) B.(0,1) C.(-1,1) D.(1,+∞)
解析:選C 令g(x)=f(x)-(x+1),∴g′(x)=f′(x)-<0,故g(x)在(-∞,+∞)上單調(diào) 37、遞減且g(1)=0.令g(x)>0,則x<1,f(x2)>?f(x2)->0?g(x2)>0?x2<1?-1 38、A.當(dāng)a<0時,x1+x2<0,x1x2>0
B.當(dāng)a<0時,x1+x2>0,x1x2<0
C.當(dāng)a>0時,x1+x2<0,x1x2>0
D.當(dāng)a>0時,x1+x2>0,x1x2<0
解析:選B 由于函數(shù)有且僅有兩個不同的零點,因此必有一個零點是重零點,則令f(x)=a(x-x1)(x-x2)2=ax3-a(x1+2x2)x2+ax2(2x1+x2)x-ax1x,
則ax1x=2?、?,
ax2(2x1+x2)=0?、?,
當(dāng)a<0時,由①式得,x1<0且x2≠0,
由②式得,2x1+x2=0,x2=-2x1.
因此,x1+x2=-x1>0,x1x2=-2x<0.
當(dāng)a>0時, 39、由①式得,x1>0且x2≠0,
由②式得,2x1+x2=0,x2=-2x1.
因此,x1+x2=-x1<0,x1x2=-2x<0.只有B項符合.
12.我們常用以下方法求形如函數(shù)y=f(x)g(x)(f(x)>0)的導(dǎo)數(shù):先兩邊同取自然對數(shù)ln y=g(x)ln f(x),再兩邊同時求導(dǎo)得到·y′=g′(x)ln f(x)+g(x)··f′(x),于是得到y(tǒng)′=f(x)g(x)g′(x)ln f(x)+g(x)··f′(x),運(yùn)用此方法求得函數(shù)y=x(x>0)的一個單調(diào)遞增區(qū)間是( )
A.(e,4) B.(3,6) C.(0,e) 40、 D.(2,3)
解析:選C 由題意知f(x)=x,g(x)=,則f′(x)=1,g′(x)=-,所以y′=x=x·,由y′=x·>0得1-ln x>0,解得0 41、答案:-
14.在平面直角坐標(biāo)系xOy中,直線y=a(a>0)與拋物線y=x2所圍成的封閉圖形的面積為,則a=________.
解析:根據(jù)定積分的應(yīng)用可知所求面積為2∫0(a-x2)dx=20=,即=,解得a=2.
答案:2
15.已知向量a=,b=(1,t),若函數(shù)f(x)=a·b在區(qū)間(-1,1)上存在單調(diào)遞增區(qū)間,則實數(shù)t的取值范圍為________.
解析:f(x)=ex+-tx,x∈(-1,1),f′(x)=ex+x-t,∵函數(shù)f(x)=a·b在區(qū)間(-1,1)上存在單調(diào)遞增區(qū)間,∴f′(x)=ex+x-t>0在區(qū)間(-1,1)上有解,即t 42、解,而在區(qū)間(-1,1)上ex+x 43、)取得極大值,此時f(2kπ+π)=e2kπ+π[sin(2kπ+π)-cos(2kπ+π)]=e2kπ+π(k∈Z),又∵0≤x≤2 015π,∴0和2 015π都不是極值點,∴函數(shù)f(x)的各極大值之和為eπ+e3π+e5π+…+e2 011π+e2 013π==.
答案:
三角函數(shù)與解三角形
[記概念公式]
1.三角函數(shù)誘導(dǎo)公式(k∈Z)的本質(zhì)
奇變偶不變(對k而言,指k取奇數(shù)或偶數(shù)),符號看象限(看原函數(shù),同時把α看成是銳角).
2.兩角和與差的三角函數(shù)公式
(1)sin(α±β)=sin αcos β±cos αsin β;
(2)cos(α±β)=cos αc 44、os β?sin αsin β;
(3)tan(α±β)=.
3.二倍角公式
(1)sin 2α=2sin αcos α;
(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α,cos2α=,sin2α=;
(3)tan 2α=.
4.正弦定理及其變形
在△ABC中,===2R(其中R是外接圓的半徑);
a=2Rsin A,b=2Rsin B,c=2Rsin C;
sin A=,sin B=,sin C=.
5.余弦定理及其變形
a2=b2+c2-2bccos A;cos A=.
6.三角形的面積公式
S=absin C=acsin B=bc 45、sin A.
[覽規(guī)律技巧]
1.三角函數(shù)的兩種常見變換
(1)y=sin xy=sin(x+φ)
y=Asin(ωx+φ)(A>0,ω>0).
(2)y=sin xy=sin ωx
y=sin(ωx+φ)
y=Asin(ωx+φ)(A>0,ω>0).
2.整體法:求y=Asin(ωx+φ)(ω>0)的單調(diào)區(qū)間、周期、值域、對稱軸(中心)時,將ωx+φ看作一個整體,利用正弦曲線的性質(zhì)解決.
3.換元法:在求三角函數(shù)的值域時,有時將sin x(或cos x)看作一個整體,換元后轉(zhuǎn)化為二次函數(shù)來解決.
4.公式法:y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期為 46、,y=Atan(ωx+φ)的最小正周期為.
[練經(jīng)典考題]
一、選擇題
1.已知函數(shù)f(x)=tan ωx(ω>0)的圖象的相鄰兩支截直線y=所得的線段長為,則f的值是( )
A.0 B.1 C.-1 D.
解析:選A 由題意知T=,由T==,得ω=4,∴f(x)=tan 4x,∴f=tan π=0.
2.已知cos+sin α=,則sin的值是( )
A. B.- C. D.-
解析:選A cos+sin α=cos αcos+sin α·sin+sin α 47、=sin α+cos α=sin=,所以sin=.
3.sin 25°、cos 24°、tan 61°的大小關(guān)系正確的是( )
A.cos 24° 48、則m=( )
A. B. C. D.
解析:選A 因為f(x)=sin x-cos x=sinx-,所以將其圖象向右平移m(0 49、,在x軸上的投影為,則( )
A.ω=2,φ= B.ω=2,φ=
C.ω=,φ= D.ω=,φ=
解析:選A 由題知,T=4×=π,所以ω=2.因為A在曲線上,所以sin=0,又0<φ<,所以φ=.
6.已知ω>0,函數(shù)f(x)=sin在上單調(diào)遞減,則ω的取值范圍是( )
A. B.
C. D.(0,2]
解析:選A 由題意可知≥2,則ω≤2.因為ωx+∈?,k∈Z,所以ω+≥+2kπ,πω+≤+2kπ,k∈Z,故+4k≤ω≤+2k,k∈Z.即ω∈.
7.在△A 50、BC中,AC=,BC=2,B=60°,則AB邊上的高等于( )
A. B. C. D.2
解析:選C 設(shè)AB=c,由AC2=AB2+BC2-2AB·BC·cos B,得7=c2+4-2×c×2×cos 60°,c2-2c-3=0,得c=3,因此×2×3×sin 60°=×3×hAB(hAB為AB邊上的高),所以hAB=.
8.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,b2=c(b+2c),若a=,cos A=,則△ABC的面積為( )
A. B. C. 51、 D.3
解析:選C ∵b2=c(b+2c),∴b2-bc-2c2=0,即(b+c)·(b-2c)=0,∴b=2c.又a=,cos A==,∴c=2,b=4.∴S△ABC=bcsin A=×4×2×=.
9.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,其中A=150°,b=2,且△ABC的面積為1,則=( )
A.4(+) B.4(-)
C.2(+) D.2(-)
解析:選C 因為△ABC的面積S=bcsin A=1,A=150°,b=2,所以c=2,所以a2=b2+c2-2bccos A=8 52、+4,解得a=+.設(shè)△ABC外接圓的半徑為R,則有=2R,得2R=2(+),所以=2R=2(+).
10.已知函數(shù)f(x)=sin(2x+φ),其中|φ|<π,若f(x)≤對x∈R恒成立,且f 53、+≤+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z,故函數(shù)f(x)的單調(diào)遞增區(qū)間是(k∈Z).
11.若sin α=1-tan 10°sin α,則銳角α的值為( )
A.40° B.50° C.60° D.70°
解析:選B 原式可變形為sin α(1+tan 10°)=1,可得sin α(1+tan 10°)=2sin α·=2sin α·==1,所以sin α=sin 50°.又因為α為銳角,所以α=50°.
12.已知函數(shù)f(x)=2sin xcos x-2sin2x+1(x∈R),若在△ABC中,內(nèi)角A, 54、B,C的對邊分別為a,b,c,a=,A為銳角,且f=,則△ABC面積的最大值為( )
A. B.
C. D.
解析:選A f(x)=2sin xcos x-2sin2x+1=sin 2x+cos 2x=sin,f=?sin2A+=?cos 2A=,∴2cos2A-1=,cos A=,sin A=.由余弦定理a2=b2+c2-2bccos A,得b2+c2-bc=3≥2bc-bc,∴bc≤,∴S△ABC=bcsin A≤××=,當(dāng)且僅當(dāng)b=c=時等號成立,故△ABC面積的最大值為.
二、填空題
13.已知角α的 55、終邊上一點的坐標(biāo)為,則角α的最小正值為________.
解析:由題知,tan α===-,且sin>0,cos<0,所以α是第四象限角,因此α的最小正值為.
答案:
14.函數(shù)y=2sin的單調(diào)遞增區(qū)間為________.
解析:由y=2sin,得y=-2sin,
由+2kπ≤x-≤+2kπ,k∈Z,得+3kπ≤x≤+3kπ,k∈Z,故函數(shù)的單調(diào)遞增區(qū)間為+3kπ,+3kπ,k∈Z.
答案:,k∈Z
15.對于函數(shù)f(x)=給出下列四個結(jié)論:
①該函數(shù)是以π為最小正周期的周期函數(shù);
②當(dāng)且僅當(dāng)x=π+kπ(k∈Z)時,該函數(shù)取得最小值-1;
③該函數(shù)的圖象關(guān)于x=+2kπ 56、(k∈Z)對稱;
④當(dāng)且僅當(dāng)2kπ 57、得塔頂A的仰角為30°,則塔高為________米.
解析:如圖,設(shè)塔高為h,在Rt△AOC中,∠ACO=45°,則OC=OA=h.
在Rt△AOD中,∠ADO=30°,則OD=h.
在△OCD中,∠OCD=120°,CD=10,OD2=OC2+CD2-2OC×CD×cos∠OCD,即(h)2=h2+102-2h×10×cos 120°,所以h2-5h-50=0,解得h=10或h=-5(舍去).
答案:10
平面向量
[記概念公式]
1.兩非零向量平行、垂直的充要條件
若a=(x1,y1),b=(x2,y2),則
(1)a∥b?a=λb(b≠0)?x1y2-x2y1 58、=0;
(2)a⊥b?a·b=0?x1x2+y1y2=0.
2.兩非零向量的數(shù)量積
若非零向量a=(a1,a2),b=(b1,b2),則a·b=|a||b|·cos〈a,b〉=a1b1+a2b2.
3.利用向量的數(shù)量積求線段的長度問題
(1)若a=(x,y),則|a|==;
(2)若A(x1,y1),B(x2,y2),則=.
[覽規(guī)律技巧]
1.三點共線的判定
三個點A,B,C共線?共線;向量中三終點A,B,C共線?存在實數(shù)α,β,使得=,且α+β=1.
2.平面向量夾角大小的判定方法
若a·b>0?a與b的夾角θ為銳角或零角;
若a·b<0?a與b的夾角θ為鈍角或平角 59、;
若a·b=0?a與b的夾角為90°(a≠0,b≠0).
3.三角形兩心的向量形式
設(shè)O為△ABC所在平面上的一點.
(1)O是三條中線的交點?O是△ABC的重心?
(2)O是三條高線的交點?O是△ABC的垂心?
[練經(jīng)典考題]
一、選擇題
1.若向量b與向量a=(1,-2)的夾角是180°,且|b|=3,則b=( )
A.(-3,6) B.(3,-6) C.(6,-3) D.(-6,3)
解析:選A 設(shè)b=(x,y),由已知條件得解得或(舍去),∴b=(-3,6).
2.已知A,B,C是半徑為2的圓O上三點,若=(+),則 的值為( )
A.0 60、 B.1 C.2 D.4
解析:選A 由題易知點O為BC的中點,即BC為圓O的直徑,故在△ABC中,角A為直角,即AC與AB的夾角為90°,∴=0.
3.在△ABC中,且a·b=b·c=c·a,則△ABC的形狀是( )
A.等腰非等邊三角形 B.直角三角形
C.等腰直角三角形 D.等邊三角形
解析:選D ∵a·b=b·c=c·a,∴a·b-b·c=0,∴b·(a-c)=0,∴(a-c)⊥b.又a-c=過CA的中點,∴BC=BA,同理,BC=AC,∴△ABC是等邊三角形.
61、
A.- B.- C. D.
5.如圖,將45°直角三角板和30°直角三角板拼在一起,其中45°直角三角板的斜邊與30°直角三角板的30°角所對的直角邊重合.若則x,y的值分別為( )
A.,1 B.1+,
C.2, D.,1+
解析:選B 設(shè)AD=DC=1,則AC=,AB=2,BC=.在△BCD中,由余弦定理得DB2=DC2+CB2-2DC·CB·cos(45°+90°)=7+2.以D為原點,DA為x軸,DC為y軸建立平面直角坐標(biāo)系,則D(0,0),A(1,0) 62、,C(0,1),B(y,x),=(y,x-1),=(y,x),∴6=(x-1)2+y2,x2+y2=7+2,∴x=1+,y=.
6.如圖,△ABC中,D,E分別為AB,AC的中點,CD與BE交于F,設(shè)則m+n=( )
A.1 B. C. D.
解析:選C 設(shè)∵E,D分別為AC,AB的中點,=-a+b,=(b-a)+λ=a+(1-λ)b,∵共線,∴=,∴λ=,∴=b+CD―→=b+=a+b,故m=,n=,m+n=.
7.若G是△ABC的重心,a,b,c分別是角A,B,C的對邊,若則角A=( )
A.90° 63、 B.60° C.45° D.30°
( )
A.-6 B.-2 C.2 D.6
9.在△ABC中,若對任意的m∈R,恒成立,則△ABC的形狀為( )
A.直角三角形 B.銳角三角形
C.鈍角三角形 D.不確定
10.設(shè)平面向量a,b,c的模均等于2,且a·b=0,則(a-c)·(b-c)的最小值為( )
A.4 B.4-4
C.-4 D.4-4
解析:選D (a-c)·( 64、b-c)=c2-c·(a+b)≥4-|c|·|a+b|=4-2=4-4,∴(a-c)·(b-c)的最小值為4-4.
11.已知A,B是圓O:x2+y2=1上的兩個點,P是AB線段上的動點,當(dāng)△AOB的面積最大時,則-的最大值是( )
A.-1 B.0 C. D.
解析:選C S△AOB=r2sin∠AOB,當(dāng)且僅當(dāng)∠AOB=90°時面積取得最大值,即由于點P在線段AB上,故設(shè)則-==-2x2+x=-2×2+(0≤x≤1)(*),當(dāng)且僅當(dāng)x=時(*)式取得最大值.
12.已知向量a=(1,0),b=(0,1),c=a 65、+λb(λ∈R),向量d如圖所示,則存在λ>0,使得〈c,d〉=( )
A. B.
C. D.π
解析:選A 因為a=(1,0),b=(0,1),c=a+λb(λ∈R),所以c=(1,λ),由圖象可知d=(4,3),所以cos〈c,d〉=>0,排除C,D項;當(dāng)=,即11λ2+96λ+39=0時,此方程無正根,所以無解,排除B項;當(dāng)=,即39λ2-96λ+11=0時,此方程有兩正根.
二、填空題
13.已知點A(-1,-1),B(3,1),C(1,4),則向量在向量方向上的投影為________.
解析:由A(-1, 66、-1),B(3,1),C(1,4),得=(-2,3),=(-4,-2),向量在向量方向上的投影為||cos〈,〉===.
答案:
答案:1
15.如圖,在△ABC中,∠B=60°,O為△ABC的外心,P為劣弧AC上一動點,且 (x,y∈R),則x+y的最大值為________.
解析:∵∠B=60°,∴∠AOC=120°,當(dāng)P在A點時,x=1,y=0,x+y=1;當(dāng)P在A,C之間時,得x>0,y>0,將兩邊平方得x2+y2-xy=1,(x+y)2-1=3xy≤32=(x+y)2,即(x+y)2≤4,x+y≤2,故(x+y)max=2.
答案:2
16.定義域為[a,b]的函數(shù)y=f(x)的圖象的兩個端點為A,B,M(x,y)是f(x)圖象上任意一點,其中x=λa+(1-λ)b(λ∈R),向量若不等式≤k恒成立,則稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x+在[1,2]上“k階線性近似”,則實數(shù)k的取值范圍為________.
解析:由題意知a=1,b=2,所以A(1,2),B.所以直線AB的方程為y=(x+3).因為xM=λa+(1-λ)b=λ
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)生產(chǎn)決策報告
- 進(jìn)口鐵礦粉的燒結(jié)性能及配礦方法
- 經(jīng)濟(jì)學(xué)說史第十四章新凱恩斯主義
- 時間管理從拖延走向高效的基石
- (聽賞)月光下的鳳尾竹
- 課題1水的組成 (10)(精品)
- 客戶溝通方法與技巧
- 大中華國際交易廣場寫字樓項目營銷推廣報告
- 易拉罐尺寸的最優(yōu)設(shè)計方案
- 智慧教室核舟記
- 信息化 BI 商業(yè)智能與企業(yè)即時戰(zhàn)情中心
- 語文蘇教版六年級上冊《船長》第一課時
- 曲軸工藝基礎(chǔ)知識
- 電信集團(tuán)網(wǎng)規(guī)網(wǎng)優(yōu)A+級培訓(xùn)——11-CDMA功率控制及參數(shù)設(shè)置
- 三、物質(zhì)的密度 (2)