江蘇省2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 立體幾何 第1講 空間中的平行與垂直學(xué)案
《江蘇省2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 立體幾何 第1講 空間中的平行與垂直學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇省2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 立體幾何 第1講 空間中的平行與垂直學(xué)案(14頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第1講 空間中的平行與垂直 [考情考向分析] 自從江蘇實(shí)施新課標(biāo)以來,命題者嚴(yán)格執(zhí)行江蘇高考對(duì)立體幾何的考試說明要求,大幅度降低難度,命題的焦點(diǎn)是空間平行與垂直.試題總體在送分題的位置,但是對(duì)考生的規(guī)范答題要求比較高. 熱點(diǎn)一 空間線面關(guān)系的判定 例1 (1)若直線a與平面α不垂直,則在平面α內(nèi)與直線a垂直的直線有________條. 答案 無數(shù) (2)(2018·江蘇泰州中學(xué)調(diào)研)已知a,b,c是三條不同的直線,α,β,γ是三個(gè)不同的平面,那么下列命題中正確的序號(hào)為________.(填序號(hào)) ①若a⊥c,b⊥c,則a∥b;②若α⊥γ,β⊥γ,則α∥β; ③若a⊥α,b
2、⊥α,則a∥b;④若a⊥α,a⊥β,則α∥β. 答案?、邰? 解析 可以借助長(zhǎng)方體進(jìn)行判斷,①中的a,b也可能相交或異面;②中的α,β可能相交,③④正確. 思維升華 解決空間點(diǎn)、線、面位置關(guān)系的組合判斷題,主要是根據(jù)平面的基本性質(zhì)、空間位置關(guān)系的各種情況,以及空間線面垂直、平行關(guān)系的判定定理和性質(zhì)定理進(jìn)行判斷,必要時(shí)可以利用正方體、長(zhǎng)方體、棱錐等幾何模型輔助判斷,同時(shí)要注意平面幾何中的結(jié)論不能完全引用到立體幾何中. 跟蹤演練1 如圖,平面α與平面β相交于BC,AB?α,CD?β,點(diǎn)A?BC,點(diǎn)D?BC,則下列敘述正確的是________.(填序號(hào)) ①直線AD與BC是異面直線;
3、 ②過AD只能作一個(gè)平面與BC平行; ③過AD只能作一個(gè)平面與BC垂直; ④過D只能作唯一平面與BC垂直,但過D可作無數(shù)個(gè)平面與BC平行. 答案 ①②④ 解析 由異面直線的判定定理得直線AD與BC是異面直線;在平面β內(nèi)僅有一條直線過點(diǎn)D且與BC平行,這條直線與AD確定一個(gè)平面與BC平行,即過AD只能作一個(gè)平面與BC平行;若AD垂直于平面α,則過AD的平面都與BC垂直,因此③錯(cuò);過D只能作唯一平面與BC垂直,但過D可作無數(shù)個(gè)平面與BC平行.故①②④正確. 熱點(diǎn)二 直線與平面的平行與垂直 例2 (2018·江蘇揚(yáng)州中學(xué)調(diào)研)如圖,在四棱錐P-ABCD中,四邊形ABCD為菱形,PA⊥平
4、面ABCD,BD交AC于點(diǎn)E,F(xiàn)是線段PC中點(diǎn),G為線段EC中點(diǎn). (1)求證:FG∥平面PBD; (2)求證:BD⊥FG. 證明 (1)連結(jié)PE,因?yàn)镚,F(xiàn)分別為EC和PC的中點(diǎn), ∴FG∥PE, 又FG?平面PBD,PE?平面PBD, ∴FG∥平面PBD. (2)∵四邊形ABCD為菱形,∴BD⊥AC, 又PA⊥平面ABCD,BD?平面ABCD,∴BD⊥PA, ∵PA?平面PAC,AC?平面PAC, 且PA∩AC=A,∴BD⊥平面PAC, ∵FG?平面PAC,∴BD⊥FG. 思維升華 垂直、平行關(guān)系的基礎(chǔ)是線線垂直和線線平行,常用方法如下: (1)證明線線平
5、行常用的方法:一是利用平行公理,即證兩直線同時(shí)和第三條直線平行;二是利用平行四邊形進(jìn)行平行轉(zhuǎn)換;三是利用三角形的中位線定理證明線線平行;四是利用線面平行、面面平行的性質(zhì)定理進(jìn)行平行轉(zhuǎn)換. (2)證明線線垂直常用的方法:①利用等腰三角形底邊中線即高線的性質(zhì);②勾股定理;③線面垂直的性質(zhì),即要證兩線垂直,只需證明一條直線垂直于另一條直線所在的平面即可,l⊥α,a?α?l⊥a. 跟蹤演練2 (2018·蘇錫常鎮(zhèn)四市調(diào)研)如圖,在四棱錐P-ABCD中,∠ADB=90°,CB=CD,點(diǎn)E為棱PB的中點(diǎn). (1)若PB=PD,求證:PC⊥BD; (2)求證:CE∥平面PAD. 證明 (1)取
6、BD的中點(diǎn)O,連結(jié)CO,PO, 因?yàn)镃D=CB, 所以△CBD為等腰三角形, 所以BD⊥CO. 因?yàn)镻B=PD,所以△PBD為等腰三角形,所以BD⊥PO. 又PO∩CO=O,PO,CO?平面PCO, 所以BD⊥平面PCO. 因?yàn)镻C?平面PCO,所以PC⊥BD. (2)由E為PB的中點(diǎn),連結(jié)EO,則EO∥PD, 又EO?平面PAD,PD?平面PAD, 所以EO∥平面PAD. 由∠ADB=90°及BD⊥CO,可得CO∥AD, 又CO?平面PAD,AD?平面PAD, 所以CO∥平面PAD. 又CO∩EO=O,CO,EO?平面COE, 所以平面CEO∥平面PAD
7、, 而CE?平面CEO,所以CE∥平面PAD. 熱點(diǎn)三 平面與平面的平行與垂直 例3 (2018·江蘇鹽城中學(xué)模擬)如圖,四棱柱ABCD-A1B1C1D1為長(zhǎng)方體,點(diǎn)P是CD中點(diǎn),點(diǎn)Q是A1B1中點(diǎn). (1)求證:AQ∥平面PBC1; (2)若BC=CC1,求證:平面A1B1C⊥平面PBC1. 證明 (1)取AB中點(diǎn)為R,連結(jié)PR,B1R. 由已知點(diǎn)P是CD中點(diǎn),點(diǎn)Q是A1B1中點(diǎn)可以證得, 四邊形AQB1R,PRB1C1都為平行四邊形, 所以AQ∥B1R,B1R∥PC1,所以AQ∥PC1, 因?yàn)锳Q?平面PBC1,PC1?平面PBC1, 所以AQ∥平面PBC1.
8、 (2)因?yàn)樗睦庵鵄BCD-A1B1C1D1為長(zhǎng)方體,BC=CC1, 所以B1C⊥BC1, 因?yàn)锳1B1⊥平面BB1C1C,BC1?平面BB1C1C, 所以A1B1⊥BC1, 因?yàn)锳1B1∩B1C=B1,A1B1?平面A1B1C,B1C?平面A1B1C, 所以BC1⊥平面A1B1C, 又因?yàn)锽C1?平面PBC1,所以平面A1B1C⊥平面PBC1. 思維升華 證明面面平行或面面垂直的關(guān)鍵是尋找線面平行或線面垂直,充分體現(xiàn)了轉(zhuǎn)化與化歸思想. 跟蹤演練3 如圖,在四面體ABCD中,AD=BD,∠ABC=90°,點(diǎn)E,F(xiàn)分別為棱AB,AC上的點(diǎn),點(diǎn)G為棱AD的中點(diǎn),且平面EFG∥平面
9、BCD. (1)求的值; (2)求證:平面EFD⊥平面ABC. (1)解 因?yàn)槠矫鍱FG∥平面BCD,平面ABD∩平面EFG=EG,平面ABD∩平面BCD=BD, 所以EG∥BD, 又G為AD的中點(diǎn),所以E為AB的中點(diǎn), 同理可得,F(xiàn)為AC的中點(diǎn),所以=. (2)證明 因?yàn)锳D=BD, 由(1)知,E為AB的中點(diǎn),所以AB⊥DE, 又∠ABC=90°,即AB⊥BC, 由(1)知,EF∥BC,所以AB⊥EF, 又DE∩EF=E,DE,EF?平面EFD, 所以AB⊥平面EFD, 又AB?平面ABC,所以平面EFD⊥平面ABC. 1.(2018·江蘇)如圖,在平行
10、六面體ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1. 求證:(1)AB∥平面A1B1C; (2)平面ABB1A1⊥平面A1BC. 證明 (1)在平行六面體ABCD-A1B1C1D1中,AB∥A1B1. 因?yàn)锳B?平面A1B1C, A1B1?平面A1B1C, 所以AB∥平面A1B1C. (2)在平行六面體ABCD-A1B1C1D1中, 四邊形ABB1A1為平行四邊形. 又因?yàn)锳A1=AB,所以四邊形ABB1A1為菱形, 因此AB1⊥A1B. 又因?yàn)锳B1⊥B1C1,BC∥B1C1, 所以AB1⊥BC. 又因?yàn)锳1B∩BC=B,A1B,BC?平面A1B
11、C, 所以AB1⊥平面A1BC. 因?yàn)锳B1?平面ABB1A1, 所以平面ABB1A1⊥平面A1BC. 2.(2018·江蘇南京師大附中模擬)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,點(diǎn)E在棱PC上(異于點(diǎn)P,C),平面ABE與棱PD交于點(diǎn)F. (1)求證:AB∥EF; (2)若AF⊥EF,求證:平面PAD⊥平面ABCD. 證明 (1)因?yàn)樗倪呅蜛BCD是矩形, 所以AB∥CD. 又AB?平面PDC,CD?平面PDC, 所以AB∥平面PDC, 又因?yàn)锳B?平面ABE,平面ABE∩平面PDC=EF, 所以AB∥EF. (2)因?yàn)樗倪呅蜛BCD是矩形,所以AB
12、⊥AD. 因?yàn)锳F⊥EF,(1)中已證AB∥EF, 所以AB⊥AF, 又AB⊥AD, 由點(diǎn)E在棱PC上(異于點(diǎn)C),所以F點(diǎn)異于點(diǎn)D, 所以AF∩AD=A,AF,AD?平面PAD, 所以AB⊥平面PAD, 又AB?平面ABCD, 所以平面PAD⊥平面ABCD. A組 專題通關(guān) 1.設(shè)a,b是平面α內(nèi)兩條不同的直線,l是平面α外的一條直線,則“l(fā)⊥a,l⊥b”是“l(fā)⊥α”的________條件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”) 答案 必要不充分 解析 若a,b是平面α內(nèi)兩條不同的直線,l是平面α外的一條直線,l⊥a,l⊥b,a∥b,
13、則l可以與平面α斜交,推不出l⊥α.若l⊥α,a,b是平面α內(nèi)兩條不同的直線,l是平面α外的一條直線,則l⊥a,l⊥b.∴“l(fā)⊥a,l⊥b”是“l(fā)⊥α”的必要不充分條件. 2.已知平面α⊥平面β,α∩β=l,點(diǎn)A∈α,直線AB∥l,直線AC⊥l,直線m∥α,m∥β,則下列四種位置關(guān)系中,不一定成立的是________.(填序號(hào)) ①AB∥m;②AC⊥m;③AB∥β;④AC⊥β. 答案 ④ 解析 如圖所示,AB∥l∥m;∵AC⊥l,m∥l,∴AC⊥m; ∵AB∥l,AB?β,l?β,∴AB∥β,只有④不一定成立. 3.在三棱錐A-BCD中,若AD⊥BC,BD⊥AD,△BCD是銳角
14、三角形,下列一定正確的是________.(填序號(hào)) ①平面ABD⊥平面ADC;②平面ABD⊥平面ABC; ③平面ADC⊥平面BCD;④平面ABC⊥平面BCD. 答案?、? 解析 由AD⊥BC,BD⊥AD,BC∩BD=B,BC,BD?平面BCD, ∴AD⊥平面BCD, 又AD?平面ADC,∴平面ADC⊥平面BCD. 4.已知α,β是兩個(gè)不同的平面,l,m是兩條不同的直線,l⊥α,m?β.給出下列命題: ①α∥β?l⊥m;②α⊥β?l∥m;③m∥α?l⊥β;④l⊥β?m∥α. 其中正確的命題是________. (填寫所有正確命題的序號(hào)) 答案?、佗? 解析 ①α∥β,l⊥α?
15、l⊥β?l⊥m,命題正確;②α⊥β,l⊥α?l,m可平行,可相交,可異面,命題錯(cuò)誤;③m∥α,l⊥α?l⊥m?l與β可平行,l可在β內(nèi),l可與β相交,命題錯(cuò)誤;④ l⊥β,l⊥α?β∥α?m∥α,命題正確. 5.如圖,G,H,M,N分別是正三棱柱的頂點(diǎn)或所在棱的中點(diǎn),則表示GH,MN是異面直線的圖形的序號(hào)為________. 答案?、冖? 解析 由題意可得圖①中GH與MN平行,不合題意; 圖②中GH與MN異面,符合題意; 圖③中GH與MN相交,不合題意; 圖④中GH與MN異面,符合題意. 則表示GH,MN是異面直線的圖形的序號(hào)為②④. 6.給出下列四個(gè)命題: ①如果平面
16、α外一條直線a與平面α內(nèi)一條直線b平行,那么a∥α; ②過空間一定點(diǎn)有且只有一條直線與已知平面垂直; ③如果一條直線垂直于一個(gè)平面內(nèi)的無數(shù)條直線,那么這條直線與這個(gè)平面垂直; ④若兩個(gè)相交平面都垂直于第三個(gè)平面,則這兩個(gè)平面的交線垂直于第三個(gè)平面. 其中真命題的個(gè)數(shù)為________. 答案 3 解析 對(duì)于①,根據(jù)線面平行的判定定理,如果平面外一條直線a與平面α內(nèi)一條直線b平行,那么a∥α,故正確;對(duì)于②,因?yàn)榇怪庇谕黄矫娴膬芍本€平行,所以過空間一定點(diǎn)有且只有一條直線與已知平面垂直,故正確;對(duì)于③,平面內(nèi)無數(shù)條直線均為平行線時(shí),不能得出直線與這個(gè)平面垂直,故不正確;對(duì)于④,因?yàn)閮?/p>
17、個(gè)相交平面都垂直于第三個(gè)平面,所以在兩個(gè)相交平面內(nèi)各取一條直線垂直于第三個(gè)平面,可得這兩條直線平行,則其中一條直線平行于另一條直線所在的平面,可得這條直線平行于這兩個(gè)相交平面的交線,從而交線垂直于第三個(gè)平面,故正確.故真命題的個(gè)數(shù)為3. 7.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=6,AB=3,AD=8,點(diǎn)M是棱AD的中點(diǎn),N在棱AA1上,且滿足AN=2NA1,P是側(cè)面四邊形ADD1A1內(nèi)一動(dòng)點(diǎn)(含邊界),若C1P∥平面CMN,則線段C1P長(zhǎng)度的最小值是________. 答案 解析 取A1D1的中點(diǎn)Q,過點(diǎn)Q在平面ADD1A1內(nèi)作MN的平行線交DD1于E,則易知平面C
18、1QE∥平面CMN,在△C1QE中作C1P⊥QE,則C1P=為所求. 8.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,點(diǎn)D是A1C1的中點(diǎn),點(diǎn)F在線段AA1上,當(dāng)AF=________時(shí),CF⊥平面B1DF. 答案 a或2a 解析 由題意易知,B1D⊥平面ACC1A1, 又CF?平面ACC1A1,所以B1D⊥CF. 要使CF⊥平面B1DF,只需CF⊥DF即可. 令CF⊥DF,設(shè)AF=x,則A1F=3a-x. 易知Rt△CAF∽R(shí)t△FA1D, 得=,即=, 整理得x2-3ax+2a2=
19、0, 解得x=a或x=2a. 9. (2017·江蘇)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD. 求證:(1)EF∥平面ABC; (2)AD⊥AC. 證明 (1)在平面ABD內(nèi),AB⊥AD,EF⊥AD, 則AB∥EF. ∵AB?平面ABC,EF?平面ABC, ∴EF∥平面ABC. (2)∵BC⊥BD,平面ABD∩平面BCD=BD,平面ABD⊥平面BCD,BC?平面BCD,∴BC⊥平面ABD. ∵AD?平面ABD,∴BC⊥AD. ∵AB⊥AD,BC,AB?平面ABC,BC∩
20、AB=B, ∴AD⊥平面ABC,又AC?平面ABC,∴AD⊥AC. 10.如圖所示的多面體中,底面ABCD為正方形,△GAD為等邊三角形,BF⊥平面ABCD,∠GDC=90°,點(diǎn)P為線段GD的中點(diǎn). (1)求證:AP⊥平面GCD; (2)求證:平面ADG∥平面FBC. 證明 (1)∵△GAD是等邊三角形,點(diǎn)P為線段GD的中點(diǎn),∴AP⊥GD. ∵AD⊥CD,GD⊥CD,且AD∩GD=D,AD,GD?平面GAD,故CD⊥平面GAD, 又AP?平面GAD,故CD⊥AP, 又CD∩GD=D,CD,GD?平面GCD, 故AP⊥平面GCD. (2)∵BF⊥平面ABCD,CD?平面A
21、BCD,∴BF⊥CD, ∵BC⊥CD,BF∩BC=B,BF,BC?平面FBC, ∴CD⊥平面FBC, 由(1)知CD⊥平面GAD,∴平面ADG∥平面FBC. B組 能力提高 11.如圖,平面α⊥平面β,α∩β=l,A,C是α內(nèi)不同的兩點(diǎn),B,D是β內(nèi)不同的兩點(diǎn),且A,B,C,D?直線l,M,N分別是線段AB,CD的中點(diǎn).下列判斷正確的是________.(填序號(hào)) ①當(dāng)CD=2AB時(shí),M,N兩點(diǎn)不可能重合; ②M,N兩點(diǎn)可能重合,但此時(shí)直線AC與l不可能相交; ③當(dāng)AB與CD相交,直線AC平行于l時(shí),直線BD可以與l相交; ④當(dāng)AB,CD是異面直線時(shí),直線MN可能與l平行
22、. 答案 ② 解析 由于直線CD的兩個(gè)端點(diǎn)都可以動(dòng),所以M,N兩點(diǎn)可能重合,此時(shí)兩條直線AB,CD共面,由于兩條線段互相平分,所以四邊形ACDB是平行四邊形,因此AC∥BD,而BD?β,AC?β,所以由線面平行的判定定理可得AC∥β,又因?yàn)锳C?α,α∩β=l,所以由線面平行的性質(zhì)定理可得AC∥l,故②正確. 12.如圖,在下列四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,Q為所在棱的中點(diǎn),則在這四個(gè)正方體中,直線AB與平面MNQ不平行的是________.(填序號(hào)) 答案 (1) 解析 對(duì)于(1),作如圖①所示的輔助線,其中D為BC的中點(diǎn),則QD∥AB. ∵QD∩平面M
23、NQ=Q,∴QD與平面MNQ相交, ∴直線AB與平面MNQ相交; 對(duì)于(2),作如圖②所示的輔助線, 則AB∥CD,CD∥MQ,∴AB∥MQ, 又AB?平面MNQ,MQ?平面MNQ,∴AB∥平面MNQ; 對(duì)于(3),作如圖③所示的輔助線, 則AB∥CD,CD∥MQ, ∴AB∥MQ, 又AB?平面MNQ,MQ?平面MNQ, ∴AB∥平面MNQ; 對(duì)于(4),作如圖④所示的輔助線, 則AB∥CD,CD∥NQ, ∴AB∥NQ,又AB?平面MNQ,NQ?平面MNQ, ∴AB∥平面MNQ. 故四個(gè)正方體中直線AB與平面MNQ不平行的是(1). 13.如圖,在三棱柱A
24、BC-A1B1C1中,AB=AC,點(diǎn)E,F(xiàn)分別在棱BB1,CC1上(均異于端點(diǎn)),且∠ABE=∠ACF,AE⊥BB1,AF⊥CC1. 求證:(1)平面AEF⊥平面BB1C1C; (2)BC∥平面AEF. 證明 (1)在三棱柱ABC-A1B1C1中,BB1∥CC1. 因?yàn)锳F⊥CC1,所以AF⊥BB1. 又AE⊥BB1,AE∩AF=A,AE?平面AEF,AF?平面AEF, 所以BB1⊥平面AEF, 又因?yàn)锽B1?平面BB1C1C, 所以平面AEF⊥平面BB1C1C. (2)因?yàn)锳E⊥BB1,AF⊥CC1,∠ABE=∠ACF, AB=AC, 所以△AEB≌△AFC. 所
25、以BE=CF. 又由題意知,BE∥CF. 所以四邊形BEFC是平行四邊形. 從而BC∥EF. 又BC?平面AEF,EF?平面AEF, 所以BC∥平面AEF. 14.(2018·江蘇啟東中學(xué)模擬)如圖,在三棱錐P-ABC中,AC⊥BC,O為AC的中點(diǎn),PO⊥底面ABC,M為AB的中點(diǎn). (1)證明:AC⊥平面POM; (2)設(shè)E是棱PA上的一點(diǎn),若PB∥平面EOM,求的值. (1)證明 因?yàn)镸,O分別是AB,AC的中點(diǎn), 所以MO∥BC, 因?yàn)锳C⊥BC,所以AC⊥MO. 因?yàn)镻O⊥底面ABC,AC?底面ABC, 所以PO⊥AC. 因?yàn)镻O?平面POM,MO?平面POM,PO∩MO=O, 所以AC⊥平面POM. (2)解 因?yàn)镻B∥平面EOM,PB?平面PAB,平面EOM∩平面PAB=EM, 所以PB∥EM. 因?yàn)镸是AB的中點(diǎn), 所以E是PA的中點(diǎn), 所以=. 14
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 研發(fā)項(xiàng)目管理(PPT131頁)
- 水質(zhì)監(jiān)測(cè)方案的制定通用課件
- 動(dòng)漫產(chǎn)業(yè)國際發(fā)展趨勢(shì)
- 第9章分離設(shè)備
- 喜之郎公司經(jīng)營理念及核心價(jià)值觀
- 建筑施工測(cè)量放線通用課件
- 前期項(xiàng)目供應(yīng)商交流
- 利率調(diào)整對(duì)房地產(chǎn)的影響課件
- 熱泵的基礎(chǔ)知識(shí)課件
- 鋼結(jié)構(gòu)的發(fā)展與現(xiàn)狀概論
- 創(chuàng)傷性ED的診治課件
- 髖關(guān)節(jié)置換病人的護(hù)理 ppt課件
- DLE測(cè)試基礎(chǔ)設(shè)施網(wǎng)絡(luò)及發(fā)展趨勢(shì)講義
- 某食品安全管理
- 工程合同與合同管理培訓(xùn)教材