影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高考數(shù)學專題復習 第25講 平面向量基本定理及坐標表示練習 新人教A版

上傳人:xt****7 文檔編號:105468832 上傳時間:2022-06-12 格式:DOC 頁數(shù):9 大?。?40.02KB
收藏 版權申訴 舉報 下載
2022年高考數(shù)學專題復習 第25講 平面向量基本定理及坐標表示練習 新人教A版_第1頁
第1頁 / 共9頁
2022年高考數(shù)學專題復習 第25講 平面向量基本定理及坐標表示練習 新人教A版_第2頁
第2頁 / 共9頁
2022年高考數(shù)學專題復習 第25講 平面向量基本定理及坐標表示練習 新人教A版_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學專題復習 第25講 平面向量基本定理及坐標表示練習 新人教A版》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學專題復習 第25講 平面向量基本定理及坐標表示練習 新人教A版(9頁珍藏版)》請在裝配圖網上搜索。

1、2022年高考數(shù)學專題復習 第25講 平面向量基本定理及坐標表示練習 新人教A版 [考情展望] 1.考查用平面向量的坐標運算進行向量的線性運算.2.考查應用平面向量基本定理進行向量的線性運算.3.以向量的坐標運算及共線向量定理為載體,考查學生分析問題和解決問題的能力. 一、平面向量基本定理  如果e1,e2是同一平面內的兩個不共線向量,那么對于該平面內任一向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一組基底. 二、平面向量的坐標運算及向量平行的坐標表示 1.平面向量的坐標運算 (1)若a=(x1,y1),b=(x2,y2)(b≠0),則a±b=

2、(x1±x2,y1±y2). (2)若A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1),||=. (3)若a=(x,y),λ∈R,則λa=(λx,λy). 2.向量平行的坐標表示 (1)如果a=(x1,y1),b=(x2,y2),則a∥b的充要條件為x1y2-x2y1=0. (2)三點A(x1,y1),B(x2,y2),C(x3,y3)共線的充要條件為(x2-x1)(y3-y1)-(x3-x1)(y2-y1)=0. 共線向量的坐標表示 若a=(x1,y1),b=(x2,y2),則a∥b的充要條件不能表示成=,因為x2,y2有可能等于0,所以應表示為x1y2-

3、x2y1=0. 1.下列各組向量:①e1=(-1,2),e2=(5,7);②e1=(3,5),e2=(6,10);③e1=(2,-3),e2=(,-),能作為表示它們所在平面內所有向量基底的是(  ) A.①    B.①③   C.②③   D.①②③ 【解析】  ②中,e2=2e1,e1與e2共線;③中e1=4e2,e1與e2共線,故選A. 【答案】 A 2.若a=(3,2),b=(0,-1),則2b-a的坐標是(  ) A.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4) 【解析】  2b-a=2(0,-1)-(3,2)=(-3,-4).

4、【答案】 D 3.已知a=(4,5),b=(8,y)且a∥b,則y等于(  ) A.5 B.10 C. D.15 【解析】  ∵a∥b,∴4y-40=0,∴y=10. 【答案】 B 4.在平行四邊形ABCD中,若=(1,3),=(2,5),則=________,=________. 【解析】 ?。剑剑?2,5)-(1,3)=(1,2),=-=(1,2)-(1,3)=(0,-1). 【答案】 (1,2) (0,-1) 5.(xx·廣東高考)設a是已知的平面向量且a≠0.關于向量a的分解,有如下四個命題: ①給定向量b,總存在向量c,使a=b+c; ②給定向

5、量b和c,總存在實數(shù)λ和μ,使a=λb+μ c; ③給定單位向量b和正數(shù)μ,總存在單位向量c和實數(shù)λ,使a=λb+μ c; ④給定正數(shù)λ和μ,總存在單位向量b和單位向量c,使a=λb+μ c. 上述命題中的向量b,c和a在同一平面內且兩兩不共線,則真命題的個數(shù)是(  ) A.1    B.2    C.3    D.4 【解析】  顯然命題①②是正確的. 對于③,以a的終點作長度為μ的圓,這個圓必須和向量λb有交點,這個不一定能滿足,③是錯的,對于命題④,若λ=μ=1,|a|>2時,與|a|=|b+c|≤|b|+|c|=2矛盾,則④不正確. 【答案】 B 6.(xx·北京高考)

6、向量a,b,c在正方形 圖4-2-1 網格中的位置如圖4-2-1所示,若c=λa+μb(λ,μ∈R),則=________. 【解析】  以向量a的終點為原點,過該點的水平和豎直的網格線所在直線為x軸、y軸建立平面直角坐標系,設一個小正方形網格的邊長為1,則a=(-1,1),b=(6,2),c=(-1,-3).由c=λa+ μb,即(-1,-3)=λ(-1,1)+μ(6,2),得-λ+6μ=-1,λ+2μ=-3,故λ=-2,μ=-,則=4. 【答案】 4 考向一 [074] 平面向量基本定理及其應用  (1)(xx·長春模擬)在平行四邊形ABCD中,E和F分別是邊CD和BC

7、的中點.若=λ+μ,其中λ,μ∈R,則λ+μ=________. 圖4-2-2 (2)如圖4-2-2,在四邊形ABCD中,AC和BD相交于點O,設=a,=b,若=2,則=________(用向量a和b表示). 【思路點撥】 (1)以,為基底分別表示,,,根據平面向量基本定理列方程組求解. (2)=2―→=―→借助三角形法則表示. 【嘗試解答】 (1)選擇,作為平面向量的一組基底,則=+,=+,=+, 又=λ+μ=(λ+μ)+(λ+μ), 于是得解得 所以λ+μ=. (2)由=2知,AB∥DC且||=2||,從而||=2||.∴==(-)=(a-b), ∴=+=b+(a-

8、b)=a+b. 【答案】 (1) (2)a+ 規(guī)律方法1 1.解答本例(1)的關鍵是根據平面向量基本定理列出關于λ,μ的方程組. 2.(1)利用平面向量基本定理表示向量時,要選擇一組恰當?shù)幕讈肀硎酒渌蛄?,即用特殊向量表示一般向量.常與待定系數(shù)法、方程思想緊密聯(lián)系在一起解決問題. (2)利用已知向量表示未知向量,實質就是利用三角形法則進行向量的加減運算,在解題時,注意方程思想的運用. 對點訓練 (xx·江蘇高考)設D,E分別是△ABC的邊AB,BC上的點,AD=AB,BE=BC.若=λ1+λ2(λ1,λ2為實數(shù)),則λ1+λ2的值為________. 【解析】  由題意=-=-=

9、(-)+=-+,于是λ1=-,λ2=,故λ1+λ2=. 【答案】  考向二 [075] 平面向量的坐標運算  已知O(0,0),A(-2,4),B(3,-1),C(-3,-4). 設=a,=b,=c,且=3c,=-2b, (1)求:3a+b-3c; (2)求滿足a=mb+nc的實數(shù)m,n; (3)求M、N的坐標及向量的坐標. 【思路點撥】 利用向量的坐標運算及向量的坐標與其起點、終點坐標的關系求解. 【嘗試解答】 a==(3-(-2),-1-4)=(5,-5), b==(-3-3,-4-(-1))=(-6,-3), c==(-2-(-3),4-(-4))=(1,8).

10、(1)3a+b-3c=(15,-15)+(-6,-3)-(3,24) =(15-6-3,-15-3-24)=(6,-42). (2)由a=mb+nc,得(5,-5)=(-6m,-3m)+(n,8n) =(-6m+n,-3m+8n). ∴解得 (3)∵=-=3c, ∴=3c+=(3,24)+(-3,-4)=(0,20). ∴M(0,20). 又∵=-=-2b, ∴=-2b+=(12,6)+(-3,-4)=(9,2), ∴N(9,2). ∴=(9,-18). 規(guī)律方法2 1.向量的坐標運算主要是利用向量加減、數(shù)乘運算的法則進行.若已知有向線段兩端點的坐標,則應先求向量的坐標

11、,注意方程思想的應用. 2.平面向量的坐標運算的引入為向量提供了新的語言——“坐標語言”,實質是“形”化為“數(shù)”.向量的坐標運算,使得向量的線性運算都可用坐標來進行,實現(xiàn)了向量運算完全代數(shù)化,將數(shù)與形緊密結合起來. 對點訓練 如圖4-2-3,已知平行四邊形的三個頂點坐標分別為A(4,3),B(3,-1),C(1,-2),求第四個頂點D的坐標. 圖4-2-3 【解】 設頂點D(x,y). 若平行四邊形四個頂點的順序為ABCD, 則=(3-4,-1-3)=(-1,-4), =(1-x,-2-y). 由=,得解得 故第四個頂點D的坐標為(2,2); 若平行四邊形四個頂點的順序

12、為ACBD, 則=(1-4,-2-3)=(-3,-5), =(3-x,-1-y). 由=,得解得 故第四個頂點D的坐標為(6,4); 若平行四邊形四個頂點的順序為ABDC, 則=(3-4,-1-3)=(-1,-4), =(x-1,y+2). 由=,得解得 故第四個頂點D的坐標為(0,-6). 綜上,第四個頂點D的坐標是(2,2)或(6,4)或(0,-6). 考向三 [076] 平面向量共線的坐標表示  (1)設向量a,b滿足|a|=2,b=(2,1),且a與b的方向相反,則a的坐標為________. (2)(xx·青島期中)向量a=,b=(cos α,1),且a∥b

13、,則cos 2α=(  ) A.-    B.    C.-    D. 【思路點撥】 (1)根據a與b的關系,設出a的坐標,再根據|a|=2求解; (2)由向量平行關系的坐標表示列出等式,求出sin α后,再利用二倍角公式進行求解. 【嘗試解答】 (1)∵a與b的方向相反且b=(2,1), ∴設a=λb=(2λ,λ),λ<0, 又|a|=2, ∴4λ2+λ2=20,即λ2=4, 又λ<0,∴λ=-2,因此a=(-4,-2). (2)∵a=,b=(cos α,1), 又由a∥b可知=tan αcos α,即sin α=, ∴cos 2α=1-2sin2α=1-=. 【答

14、案】 (1)(-4,-2) (2)D 規(guī)律方法3 1.兩平面向量共線的充要條件有兩種形式:(1)若a=(x1,y1),b=(x2,y2),則a∥b的充要條件是x1y2-x2y1=0;(2)若a∥b(a≠0),則b=λa. 2.向量共線的坐標表示既可以判定兩向量平行,也可以由平行求參數(shù).當兩向量的坐標均非零時,也可以利用坐標對應成比例來求解. 對點訓練 (1)已知向量a=(1,2),b=(1,0),c=(3,4).若λ為實數(shù),(a+λb)∥c,則λ=(  ) A.   B.   C.1   D.2 (2)已知向量=(3,-4),=(6,-3),=(5-m,-3-m),若點A、B、C能構

15、成三角形,則實數(shù)m滿足的條件是________. 【解析】  (1)∵a=(1,2),b=(1,0), ∴a+λb=(1,2)+λ(1,0)=(1+λ,2), 由于(a+λb)∥c,且c=(3,4), ∴4(1+λ)-6=0,解得λ=. (2)因為=(3,-4),=(6,-3),=(5-m,-3-m),所以=(3,1),=(-m-1,-m).由于點A、B、C能構成三角形,所以與不共線,而當與共線時,有=,解得m=, 故當點A、B、C能構成三角形時實數(shù)m滿足的條件是m≠. 【答案】 (1)B (2)m≠ 思想方法之十二 待定系數(shù)法在向量運算中的應用 根據向量之間的關系,利用

16、待定系數(shù)法列出一個含有待定系數(shù)的恒等式,然后根據恒等式的性質求出各待定系數(shù)的值或消去這些待定系數(shù),找出原來那些系數(shù)之間的關系,從而使問題得到解決. ———— [1個示范例] ———— [1個對點練] ————    如圖4-2-4所示,在△OAB中,=,=,AD與BC交于點M,設=a, 圖4-2-4 =b,利用a和b表示向量. 【解】 設=ma+nb,則=-=ma+nb-a=(m-1)a+nb. =-=-=b-a.因為A、M、D三點共線,所以存在實數(shù)λ,使 =λ,即(m-1)a+nb=-λa+b. 所以消去λ,得m+2n=1,① 同理=-=ma+nb-a=a+nb, =

17、-=b-a,因為C、M、B三點共線, 所以存在實數(shù)t,使=t, 即a+nb=t. 所以 消去t,得4m+n=1,② 聯(lián)立①②,得m=,n=,所以=a+b. 圖4-2-5  如圖4-2-5所示,M是△ABC內一點,且滿足條件+2+3=0,延長CM交AB于N,令=a,試用a表示. 【解】 因為=+,=+, 所以由+2+3=0,得 (+)+2(+)+3=0, 所以+3+2+3=0. 又因為A,N,B三點共線,C,M,N三點共線, 由平面向量基本定理,設=λ,=μ, 所以λ+3+2+3μ=0. 所以(λ+2)+(3+3μ)=0. 由于和不共線,由平面向量基本定理, 得所以 所以=-=,=+=2=2a.  

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!