《2022年高考數(shù)學(xué)大一輪總復(fù)習(xí) 第3篇 第4節(jié) 函數(shù)y=Asin(ωx+φ)的圖象及應(yīng)用課時(shí)訓(xùn)練 理 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)大一輪總復(fù)習(xí) 第3篇 第4節(jié) 函數(shù)y=Asin(ωx+φ)的圖象及應(yīng)用課時(shí)訓(xùn)練 理 新人教A版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)大一輪總復(fù)習(xí) 第3篇 第4節(jié) 函數(shù)y=Asin(ωx+φ)的圖象及應(yīng)用課時(shí)訓(xùn)練 理 新人教A版
一、選擇題
1.將函數(shù)f(x)=sin 2x的圖象向左平移個(gè)單位,得到函數(shù)g(x)=sin(2x+φ)0<φ<的圖象,則φ等于( )
A. B.
C. D.
解析:由題意g(x)=sin 2(x+)=sin(2x+),
又g(x)=sin(2x+φ),0<φ<,
∴φ=.故選C.
答案:C
2.如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0)在一個(gè)周期內(nèi)的圖象,此函數(shù)的解析式可為( )
A.y=2sin
B.y=2sin
C.y=
2、2sin
D.y=2sin
解析:由題圖可知A=2,=-=,
∴T=π,ω=2,
∴f(x)=2sin(2x+φ),
又f=2,即2sin=2,
∴φ=+2kπ(k∈Z),
結(jié)合選項(xiàng)知選B.
答案:B
3.(xx武漢市模擬)將函數(shù)f(x)=sin ωx(其中ω>0)的圖象向右平移個(gè)單位長(zhǎng)度,所得圖象經(jīng)過(guò)點(diǎn)(,0),則ω的最小值是( )
A. B.1
C. D.2
解析:函數(shù)f(x)=sin ωx的圖象向右平移個(gè)單位長(zhǎng)度得函數(shù)f(x)=sin ω(x-)的圖象,
由題意得sin ω(-)=0,
∴=kπ(k∈Z),
∴ω=2k(k∈Z),
又∵ω>0,
∴
3、ω的最小值為2,故選D.
答案:D
4.(xx年高考山東卷)將函數(shù)y=sin(2x+φ)的圖象沿x軸向左平移個(gè)單位后,得到一個(gè)偶函數(shù)的圖象,則φ的一個(gè)可能取值為( )
A. B.
C.0 D.-
解析:由函數(shù)橫向平移規(guī)律“左加右減”
則y=sin(2x+φ)向左平移個(gè)單位得
y=sin(2x++φ).
由y=sin(2x++φ)為偶函數(shù)得+φ=+kπ,k∈Z,則φ=+kπ,k∈Z,
則φ的一個(gè)可能值為.
故選B.
答案:B
5.(xx衡水中學(xué)模擬)函數(shù)f(x)=sin(ωx+φ)(x∈R)(ω>0,|φ|<)的部分圖象如圖所示,如果x1,x2∈(-,),且f(x1
4、)=f(x2),則f(x1+x2)等于( )
A. B.
C. D.1
解析:由題圖知,T=2×(+)=π,
∴ω=2,又函數(shù)的圖象經(jīng)過(guò)(-,0),
∴0=sin(-+φ),
∵|φ|<,∴φ=,
∴f(x)=sin(2x+),
在區(qū)間(-,)內(nèi)的對(duì)稱(chēng)軸方程為x=,
又f(x1)=f(x2),
∴x1+x2=2×=,
∴f(x1+x2)=sin=.
故選C.
答案:C
6.(xx年高考福建卷)設(shè)f(x)=g(x)=則f(g(π))的值為( )
A.1 B.0
C.-1 D.π
解析:g(π)=0,則f(0)=0,所以f(g(π))=0.故選B.
5、答案:B
二、填空題
7.如圖,單擺從某點(diǎn)開(kāi)始來(lái)回?cái)[動(dòng),離開(kāi)平衡位置O的距離s(cm)和時(shí)間t(s)的關(guān)系式為s=6sin(2πt+),那么單擺來(lái)回?cái)[動(dòng)一次所需的時(shí)間為_(kāi)_______s.
解析:?jiǎn)螖[來(lái)回?cái)[動(dòng)一次所需的時(shí)間即為一個(gè)周期
T==1.
答案:1
8.某城市一年中12個(gè)月的平均氣溫與月份的關(guān)系可近似地用三角函數(shù)y=a+Acos(x=1,2,3,…,12)來(lái)表示,已知6月份的月平均氣溫最高,為28 ℃,12月份的月平均氣溫最低,為18 ℃,則10月份的平均氣溫值為_(kāi)_______℃.
解析:依題意知,a==23,A==5,
∴y=23+5cos,
當(dāng)x=10時(shí),y
6、=23+5cos=20.5.
答案:20.5
9.(xx四川省樂(lè)山第二次調(diào)研)如果存在正整數(shù)ω和實(shí)數(shù)φ,使得函數(shù)f(x)=cos2(ωx+φ)的部分圖象如圖所示,且圖象經(jīng)過(guò)點(diǎn)(1,0),那么ω的值為_(kāi)_______.
解析:f(x)=cos2(ωx+φ)
=,
由圖象知<1
7、]上是增函數(shù).
正確結(jié)論的編號(hào)為_(kāi)_______.
解析:∵T=π,∴ω=2,∴y=sin(2x+φ),
∵圖象關(guān)于直線x=對(duì)稱(chēng),∴+φ=+kπ,(k∈Z),∴φ=+kπ(k∈Z),
又∵φ∈(-,),∴φ=.
∴y=sin(2x+).
當(dāng)x=時(shí),y=sin(+)=,故①不正確.
當(dāng)x=時(shí),y=0,故②正確;
當(dāng)x∈[0,]時(shí),2x+∈[,],
y=sin(2x+)不是增函數(shù),即③不正確;
當(dāng)x∈[-,0]時(shí),2x+∈[0,]?[0,],故④正確.
答案:②④
三、解答題
11.已知函數(shù)f(x)=sin+1.
(1)求它的振幅、最小正周期、初相;
(2)畫(huà)出函數(shù)y
8、=f(x)在上的圖象.
解:(1)振幅為,最小正周期T=π,初相為-.
(2)圖象如圖所示.
12.(xx皖南八校第三次聯(lián)考)已知函數(shù)f(x)=2sinx·cos x-(cos2x-sin2x),x∈R.
(1)試說(shuō)明函數(shù)f(x)的圖象是由函數(shù)y=sin x的圖象經(jīng)過(guò)怎樣的變換得到的;
(2)若函數(shù)g(x)=f(x+)(x∈R),試寫(xiě)出函數(shù)g(x)的單調(diào)區(qū)間.
解:(1)∵f(x)=2sin xcos x-(cos2x-sin2x)
=sin 2x-cos 2x=2sin(2x-),
∴f(x)=2sin(2x-)(x∈R),
∴函數(shù)f(x)的圖象可由y=sin x的
9、圖象按如下方式變換得到:
①將函數(shù)y=sin x的圖象向右平移個(gè)單位,得到函數(shù)y=sin(x-)的圖象;
②將函數(shù)y=sin(x-)的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得到函數(shù)y=sin2x-的圖象;
③將函數(shù)y=sin(2x-)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變),得到函數(shù)f(x)=2sin2x-(x∈R)的圖象.
(2)由(1)知,f(x)=2sin(2x-)(x∈R),
則g(x)=f(x+)=2sin 2x(x∈R),
由-+2kπ≤2x≤+2kπ,(k∈Z)
得-+kπ≤x≤+kπ(k∈Z).
所以函數(shù)g(x)的單調(diào)遞增區(qū)間是
[kπ-,+kπ](k∈Z),
同理可得,單調(diào)遞減區(qū)間是[kπ+,kπ+](k∈Z).