7、(3)應(yīng)用題目.此類題目要求考生具有較強(qiáng)的建模能力.
●殲滅難點(diǎn)訓(xùn)練
一、選擇題
1.(★★★★)定義在(-∞,+∞)上的任意函數(shù)f(x)都可以表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)之和,如果f(x)=lg(10x+1),其中x∈(-∞,+∞),那么( )
A.g(x)=x,h(x)=lg(10x+10-x+2)
B.g(x)=[lg(10x+1)+x],h(x)= [lg(10x+1)-x]
C.g(x)=,h(x)=lg(10x+1)-
D.g(x)=-,h(x)=lg(10x+1)+
2.(★★★★)當(dāng)a>1時(shí),函數(shù)y=logax和y=(1-a)x的圖象只可能
8、是( )
二、填空題
3.(★★★★★)已知函數(shù)f(x)=.則f--1(x-1)=_________.
4.(★★★★★)如圖,開始時(shí),桶1中有a L水,t分鐘后剩余的水符合指數(shù)衰減曲線y=
ae-nt,那么桶2中水就是y2=a-ae-nt,假設(shè)過5分鐘時(shí),桶1和桶2的水相等,則再過_________分鐘桶1中的水只有.
三、解答題
5.(★★★★)設(shè)函數(shù)f(x)=loga(x-3a)(a>0且a≠1),當(dāng)點(diǎn)P(x,y)是函數(shù)y=f(x)圖象上的點(diǎn)時(shí),點(diǎn)Q(x-2a,-y)是函數(shù)y=g(x)圖象上的點(diǎn).
(1)寫出函數(shù)y=g(x)的解析式;
(2)若當(dāng)x∈[a+2,a
9、+3]時(shí),恒有|f(x)-g(x)|≤1,試確定a的取值范圍.
6.(★★★★)已知函數(shù)f(x)=logax(a>0且a≠1),(x∈(0,+∞)),若x1,x2∈(0,+∞),判斷[f(x1)+f(x2)]與f()的大小,并加以證明.
7.(★★★★★)已知函數(shù)x,y滿足x≥1,y≥1.loga2x+loga2y=loga(ax2)+loga(ay2)(a>0且a≠1),求loga(xy)的取值范圍.
8.(★★★★)設(shè)不等式2(logx)2+9(logx)+9≤0的解集為M,求當(dāng)x∈M時(shí)函數(shù)f(x)=(log2)(log2)的最大、最小值.
10、
參考答案
難點(diǎn)磁場(chǎng)
解:(1)由>0,且2-x≠0得F(x)的定義域?yàn)?-1,1),設(shè)-1<x1<x2<1,則
F(x2)-F(x1)=()+()
,
∵x2-x1>0,2-x1>0,2-x2>0,∴上式第2項(xiàng)中對(duì)數(shù)的真數(shù)大于1.
因此F(x2)-F(x1)>0,F(x2)>F(x1),∴F(x)在(-1,1)上是增函數(shù).
(2)證明:由y=f(x)=得:2y=,
∴f-1(x)=,∵f(x)的值域?yàn)镽,∴f--1(x)的定義域?yàn)镽.
當(dāng)n≥3時(shí),f-1(n)>
11、.
用數(shù)學(xué)歸納法易證2n>2n+1(n≥3),證略.
(3)證明:∵F(0)=,∴F-1()=0,∴x=是F-1(x)=0的一個(gè)根.假設(shè)F-1(x)=0還有一個(gè)解x0(x0≠),則F-1(x0)=0,于是F(0)=x0(x0≠).這是不可能的,故F-1(x)=0有惟一解.
殲滅難點(diǎn)訓(xùn)練
一、1.解析:由題意:g(x)+h(x)=lg(10x+1) ①
又g(-x)+h(-x)=lg(10-x+1).即-g(x)+h(x)=lg(10-x+1) ②
由①②得:g(x)=,h(x)=lg(10x+1)-.
答案:C
2.解析:當(dāng)a>1時(shí),函數(shù)y=log
12、ax的圖象只能在A和C中選,又a>1時(shí),y=(1-a)x為減函數(shù).
答案:B
二、3.解析:容易求得f- -1(x)=,從而:
f-1(x-1)=
答案:
4.解析:由題意,5分鐘后,y1=ae-nt,y2=a-ae-nt,y1=y2.∴n=ln2.設(shè)再過t分鐘桶1中的水只有,則y1=ae-n(5+t)=,解得t=10.
答案:10
三、5.解:(1)設(shè)點(diǎn)Q的坐標(biāo)為(x′,y′),則x′=x-2a,y′=-y.即x=x′+2a,y=-y′.
∵點(diǎn)P(x,y)在函數(shù)y=loga(x-3a)的圖象上,∴-y′=loga(x′+2a-3a),即y′=loga,∴g(x)=loga.
13、
(2)由題意得x-3a=(a+2)-3a=-2a+2>0;=>0,又a>0且a≠1,∴0<a<1,∵|f(x)-g(x)|=|loga(x-3a)-loga|=|loga(x2-4ax+3a2)|·|f(x)-g(x)|≤1,∴-1≤loga(x2-4ax+3a2)≤1,∵0<a<1,∴a+2>2a.f(x)=x2-4ax+3a2在[a+2,a+3]上為減函數(shù),∴μ(x)=loga(x2-4ax+3a2)在[a+2,a+3]上為減函數(shù),從而[μ(x)]max=μ(a+2)=loga(4-4a),[μ(x)]min=μ(a+3)=loga(9-6a),于是所求問題轉(zhuǎn)化為求不等式組的解.
由l
14、oga(9-6a)≥-1解得0<a≤,由loga(4-4a)≤1解得0<a≤,
∴所求a的取值范圍是0<a≤.
6.解:f(x1)+f(x2)=logax1+logax2=logax1x2,
∵x1,x2∈(0,+∞),x1x2≤()2(當(dāng)且僅當(dāng)x1=x2時(shí)取“=”號(hào)),
當(dāng)a>1時(shí),有l(wèi)ogax1x2≤loga()2,
∴l(xiāng)ogax1x2≤loga(),(logax1+logax2)≤loga,
即f(x1)+f(x2)]≤f()(當(dāng)且僅當(dāng)x1=x2時(shí)取“=”號(hào))
當(dāng)0<a<1時(shí),有l(wèi)ogax1x2≥loga()2,
∴(logax1+logax2)≥loga,即[f(x1)
15、+f(x2)]≥f()(當(dāng)且僅當(dāng)x1=x2時(shí)取“=”號(hào)).
7.解:由已知等式得:loga2x+loga2y=(1+2logax)+(1+2logay),即(logax-1)2+(logay-1)2=4,令u=logax,v=logay,k=logaxy,則(u-1)2+(v-1)2=4(uv≥0),k=u+v.在直角坐標(biāo)系uOv內(nèi),圓弧(u-1)2+(v-1)2=4(uv≥0)與平行直線系v=-u+k有公共點(diǎn),分兩類討論.
(1)當(dāng)u≥0,v≥0時(shí),即a>1時(shí),結(jié)合判別式法與代點(diǎn)法得1+≤k≤2(1+);
(2)當(dāng)u≤0,v≤0,即0<a<1時(shí),同理得到2(1-)≤k≤1-.x綜上,當(dāng)a>1時(shí),logaxy的最大值為2+2,最小值為1+;當(dāng)0<a<1時(shí),logaxy的最大值為1-,最小值為2-2.
8.解:∵2(x)2+9(x)+9≤0
∴(2x+3)( x+3)≤0.
∴-3≤x≤-.
即 ()-3≤x≤()
∴()≤x≤()-3,∴2≤x≤8
即M={x|x∈[2,8]}
又f(x)=(log2x-1)(log2x-3)=log22x-4log2x+3=(log2x-2)2-1.
∵2≤x≤8,∴≤log2x≤3
∴當(dāng)log2x=2,即x=4時(shí)ymin=-1;當(dāng)log2x=3,即x=8時(shí),ymax=0.