影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

(全國通用版)2018-2019版高中數(shù)學(xué) 第二章 推理與證明 2.3 數(shù)學(xué)歸納法學(xué)案 新人教A版選修2-2

上傳人:彩*** 文檔編號:105578639 上傳時間:2022-06-12 格式:DOC 頁數(shù):16 大小:353.50KB
收藏 版權(quán)申訴 舉報 下載
(全國通用版)2018-2019版高中數(shù)學(xué) 第二章 推理與證明 2.3 數(shù)學(xué)歸納法學(xué)案 新人教A版選修2-2_第1頁
第1頁 / 共16頁
(全國通用版)2018-2019版高中數(shù)學(xué) 第二章 推理與證明 2.3 數(shù)學(xué)歸納法學(xué)案 新人教A版選修2-2_第2頁
第2頁 / 共16頁
(全國通用版)2018-2019版高中數(shù)學(xué) 第二章 推理與證明 2.3 數(shù)學(xué)歸納法學(xué)案 新人教A版選修2-2_第3頁
第3頁 / 共16頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(全國通用版)2018-2019版高中數(shù)學(xué) 第二章 推理與證明 2.3 數(shù)學(xué)歸納法學(xué)案 新人教A版選修2-2》由會員分享,可在線閱讀,更多相關(guān)《(全國通用版)2018-2019版高中數(shù)學(xué) 第二章 推理與證明 2.3 數(shù)學(xué)歸納法學(xué)案 新人教A版選修2-2(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 §2.3 數(shù)學(xué)歸納法 學(xué)習(xí)目標(biāo) 1.了解數(shù)學(xué)歸納法的原理.2.能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題. 知識點(diǎn) 數(shù)學(xué)歸納法 對于一個與正整數(shù)有關(guān)的等式n(n-1)(n-2)…(n-50)=0. 思考1 驗證當(dāng)n=1,n=2,…,n=50時等式成立嗎? 答案 成立. 思考2 能否通過以上等式歸納出當(dāng)n=51時等式也成立?為什么? 答案 不能,上面的等式只對n取1至50的正整數(shù)成立. 梳理 (1)數(shù)學(xué)歸納法的定義 一般地,證明一個與正整數(shù)n有關(guān)的命題,可按下列步驟進(jìn)行: ①(歸納奠基)證明當(dāng)n取第一個值n0(n0∈N*)時命題成立; ②(歸納遞推)假設(shè)當(dāng)n=k(k≥n0

2、,k∈N*)時命題成立,證明當(dāng)n=k+1時命題也成立. 只要完成這兩個步驟,就可以斷定命題對從n0開始的所有正整數(shù)n都成立.這種證明方法叫做數(shù)學(xué)歸納法. (2)數(shù)學(xué)歸納法的框圖表示 1.與正整數(shù)n有關(guān)的數(shù)學(xué)命題的證明只能用數(shù)學(xué)歸納法.( × ) 2.?dāng)?shù)學(xué)歸納法的第一步n0的初始值一定為1.( × ) 3.?dāng)?shù)學(xué)歸納法的兩個步驟缺一不可.( √ ) 類型一 用數(shù)學(xué)歸納法證明等式 例1 用數(shù)學(xué)歸納法證明:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,其中n∈N*. 考點(diǎn) 用數(shù)學(xué)歸納法證明等式 題點(diǎn) 利用數(shù)學(xué)歸納法證明等式 證明 (1)當(dāng)n=1時,左邊=

3、1×4=4,右邊=1×22=4,左邊=右邊,等式成立. (2)假設(shè)當(dāng)n=k(k≥1,k∈N*)時等式成立, 即1×4+2×7+3×10+…+k(3k+1)=k(k+1)2, 那么當(dāng)n=k+1時, 1×4+2×7+3×10+…+k(3k+1)+(k+1)[3(k+1)+1] =k(k+1)2+(k+1)[3(k+1)+1] =(k+1)(k2+4k+4)=(k+1)[(k+1)+1]2, 即當(dāng)n=k+1時等式也成立. 根據(jù)(1)和(2)可知等式對任何n∈N*都成立. 反思與感悟 用數(shù)學(xué)歸納法證明恒等式時,一是弄清n取第一個值n0時等式兩端項的情況;二是弄清從n=k到n=k+1等

4、式兩端增加了哪些項,減少了哪些項;三是證明n=k+1時結(jié)論也成立,要設(shè)法將待證式與歸納假設(shè)建立聯(lián)系,并朝n=k+1證明目標(biāo)的表達(dá)式變形. 跟蹤訓(xùn)練1 求證:1-+-+…+-=++…+(n∈N*). 考點(diǎn) 用數(shù)學(xué)歸納法證明等式 題點(diǎn) 利用數(shù)學(xué)歸納法證明等式 證明 (1)當(dāng)n=1時,左邊=1-=, 右邊==,左邊=右邊. (2)假設(shè)當(dāng)n=k(k≥1,k∈N*)時等式成立, 即1-+-+…+- =++…+, 則當(dāng)n=k+1時, + =+ =++…++. 即當(dāng)n=k+1時,等式也成立. 綜合(1),(2)可知,對一切n∈N*,等式成立. 類型二 用數(shù)學(xué)歸納法證明不等式

5、例2 求證:++…+>(n≥2,n∈N*). 考點(diǎn) 用數(shù)學(xué)歸納法證明不等式 題點(diǎn) 利用數(shù)學(xué)歸納法證明不等式 證明 (1)當(dāng)n=2時,左邊=+++=, 故左邊>右邊,不等式成立. (2)假設(shè)當(dāng)n=k(k≥2,k∈N*)時,命題成立, 即++…+>, 則當(dāng)n=k+1時, ++…++++ =++…++ >+.(*) 方法一 (分析法) 下面證(*)式≥, 即++-≥0, 只需證(3k+2)(3k+3)+(3k+1)(3k+3)+(3k+1)(3k+2)-3(3k+1)(3k+2)≥0, 只需證(9k2+15k+6)+(9k2+12k+3)+(9k2+9k+2)-(27k

6、2+27k+6)≥0, 只需證9k+5≥0,顯然成立. 所以當(dāng)n=k+1時,不等式也成立. 方法二 (放縮法) (*)式>+=, 所以當(dāng)n=k+1時,不等式也成立. 由(1)(2)可知,原不等式對一切n≥2,n∈N*均成立. 引申探究  把本例改為求證:+++…+>(n∈N*). 證明 (1)當(dāng)n=1時,左邊=>,不等式成立. (2)假設(shè)當(dāng)n=k(k≥1,k∈N*)時,不等式成立, 即+++…+>, 則當(dāng)n=k+1時,++…+++ =+++…+++- >++-, ∵+-==>0, ∴+++…+++->++->, ∴當(dāng)n=k+1時,不等式成立. 由(1)(2)

7、知對于任意正整數(shù)n,不等式成立. 反思與感悟 用數(shù)學(xué)歸納法證明不等式的四個關(guān)鍵 (1)驗證第一個n的值時,要注意n0不一定為1,若n>k(k為正整數(shù)),則n0=k+1. (2)證明不等式的第二步中,從n=k到n=k+1的推導(dǎo)過程中,一定要用到歸納假設(shè),不應(yīng)用歸納假設(shè)的證明不是數(shù)學(xué)歸納法,因為缺少歸納假設(shè). (3)用數(shù)學(xué)歸納法證明與n有關(guān)的不等式一般有兩種具體形式:一是直接給出不等式,按要求進(jìn)行證明;二是給出兩個式子,按要求比較它們的大小,對第二類形式往往要先對n取前幾個值的情況分別驗證比較,以免出現(xiàn)判斷失誤,最后猜出從某個n值開始都成立的結(jié)論,常用數(shù)學(xué)歸納法證明. (4)用數(shù)學(xué)歸納法

8、證明不等式的關(guān)鍵是由n=k時成立得n=k+1時成立,主要方法有比較法、分析法、綜合法、放縮法等. 跟蹤訓(xùn)練2 在數(shù)列{an}中,已知a1=a(a>2),an+1=(n∈N*),用數(shù)學(xué)歸納法證明:an>2(n∈N*). 考點(diǎn) 用數(shù)學(xué)歸納法證明不等式 題點(diǎn) 利用數(shù)學(xué)歸納法證明不等式 證明 ①當(dāng)n=1時,a1=a>2,命題成立; ②假設(shè)當(dāng)n=k(k≥1,k∈N*)時,命題成立,即ak>2,則當(dāng)n=k+1時,ak+1-2=-2=>0, ∴當(dāng)n=k+1時,命題也成立. 由①②得,對任意正整數(shù)n,都有an>2. 類型三 歸納—猜想—證明 例3 已知數(shù)列{an}滿足關(guān)系式a1=a(a>

9、0),an=(n≥2,n∈N*), (1)用a表示a2,a3,a4; (2)猜想an的表達(dá)式(用a和n表示),并用數(shù)學(xué)歸納法證明. 考點(diǎn) 數(shù)學(xué)歸納法證明數(shù)列問題 題點(diǎn) 利用數(shù)學(xué)歸納法證明數(shù)列通項問題 解 (1)a2=, a3===, a4===. (2)因為a1=a=, a2=,…, 猜想an=. 下面用數(shù)學(xué)歸納法證明. ①當(dāng)n=1時, 因為a1=a=, 所以當(dāng)n=1時猜想成立. ②假設(shè)當(dāng)n=k(k≥1,k∈N*)時猜想成立, 即ak=, 所以當(dāng)n=k+1時, ak+1== = = =, 所以當(dāng)n=k+1時猜想也成立. 根據(jù)①與②可知猜想對一切n∈

10、N*都成立. 反思與感悟 “歸納—猜想—證明”的一般步驟 跟蹤訓(xùn)練3 考察下列各式 2=2×1 3×4=4×1×3 4×5×6=8×1×3×5 5×6×7×8=16×1×3×5×7 你能做出什么一般性的猜想?能證明你的猜想嗎? 考點(diǎn) 用數(shù)學(xué)歸納法證明等式 題點(diǎn) 等式中的歸納,猜想、證明 解 由題意得,2=2×1,3×4=4×1×3,4×5×6=8×1×3×5,5×6×7×8=16×1×3×5×7,…, 猜想:(n+1)(n+2)(n+3)…2n=2n·1·3·5·…·(2n-1), 下面利用數(shù)學(xué)歸納法進(jìn)行證明. (1)當(dāng)n=1時,猜想顯然成立; (2)假設(shè)當(dāng)n=

11、k(k≥1,k∈N*)時,猜想成立,即(k+1)(k+2)(k+3)…2k=2k·1·3·5·…·(2k-1), 那么當(dāng)n=k+1時, (k+1+1)(k+1+2)(k+1+3)·…·2(k+1) =(k+1)(k+2)·…·2k·(2k+1)·2 =2k·1·3·5·…·(2k-1)(2k+1)·2 =2k+1·1·3·5·…·(2k+1) =2k+1·1·3·5·…·[2(k+1)-1] 所以當(dāng)n=k+1時猜想成立. 根據(jù)(1)(2)可知對任意正整數(shù)猜想均成立. 1.已知f(n)=1+++…+(n∈N*),計算得f(2)=,f(4)>2,f(8)>,f(16)>3

12、,f(32)>,由此推算:當(dāng)n≥2時,有(  ) A.f(2n)>(n∈N*) B.f(2n)>(n∈N*) C.f(2n)>(n∈N*) D.f(2n)>(n∈N*) 考點(diǎn) 利用數(shù)學(xué)歸納法證明不等式 題點(diǎn) 不等式中的歸納、猜想、證明 答案 D 解析 f(4)>2改寫成f(22)>;f(8)>改寫成f(23)>;f(16)>3改寫成f(24)>;f(32)>改寫成f(25)>,由此可歸納得出:當(dāng)n≥2時,f(2n)>(n∈N*). 2.用數(shù)學(xué)歸納法證明“1+a+a2+…+a2n+1=(a≠1)”.在驗證n=1時,左端計算所得項為(  ) A.1+a B.1+a+a2

13、C.1+a+a2+a3 D.1+a+a2+a3+a4 考點(diǎn) 數(shù)學(xué)歸納法定義及原理 題點(diǎn) 數(shù)學(xué)歸納法第一步:歸納奠基 答案 C 解析 將n=1代入a2n+1得a3,故選C. 3.若命題A(n)(n∈N*)在n=k(k∈N*)時成立,則有n=k+1時命題成立.現(xiàn)知命題對n=n0(n0∈N*)時成立,則有(  ) A.命題對所有正整數(shù)都成立 B.命題對小于n0的正整數(shù)不成立,對大于或等于n0的正整數(shù)都成立 C.命題對小于n0的正整數(shù)成立與否不能確定,對大于或等于n0的正整數(shù)都成立 D.以上說法都不正確 考點(diǎn) 數(shù)學(xué)歸納法定義及原理 題點(diǎn) 數(shù)學(xué)歸納法第二步:歸納遞推 答案 C

14、 解析 由已知,得n=n0(n0∈N*)時命題成立,則n=n0+1時命題成立, 在n=n0+1時命題成立的前提下,又可推得,n=(n0+1)+1時命題也成立, 依此類推,可知選C. 4.用數(shù)學(xué)歸納法證明1+2+22+…+2n-1=2n-1(n∈N*)的過程如下: (1)當(dāng)n=1時,左邊=1,右邊=21-1=1,等式成立. (2)假設(shè)當(dāng)n=k(k∈N*)時等式成立,即1+2+22+…+2k-1=2k-1,則當(dāng)n=k+1時,1+2+22+…+2k-1+2k==2k+1-1.所以當(dāng)n=k+1時,等式也成立.由此可知對于任何n∈N*,等式都成立. 上述證明,錯誤是________. 考

15、點(diǎn) 數(shù)學(xué)歸納法定義及原理 題點(diǎn) 數(shù)學(xué)歸納法第二步:歸納遞推 答案 未用歸納假設(shè) 解析 本題在由n=k成立證明n=k+1成立時, 應(yīng)用了等比數(shù)列的求和公式, 而未用上歸納假設(shè),這與數(shù)學(xué)歸納法的要求不符. 5.用數(shù)學(xué)歸納法證明: ++…+=(n∈N*). 考點(diǎn) 用數(shù)學(xué)歸納法證明等式 題點(diǎn) 利用數(shù)學(xué)歸納法證明等式 證明?、佼?dāng)n=1時,左邊==, 右邊==, 左邊=右邊,等式成立. ②假設(shè)當(dāng)n=k(k≥1,k∈N*)時,等式成立. 即++…+=, 當(dāng)n=k+1時, 左邊=++…++ =+ = = =, 右邊==, 左邊=右邊,等式成立. 即對所有n∈N*,

16、原式都成立. 在應(yīng)用數(shù)學(xué)歸納法證題時應(yīng)注意以下幾點(diǎn): (1)驗證是基礎(chǔ):找準(zhǔn)起點(diǎn),奠基要穩(wěn),有些問題中驗證的初始值不一定是1. (2)遞推是關(guān)鍵:正確分析由n=k到n=k+1時式子項數(shù)的變化是應(yīng)用數(shù)學(xué)歸納法成功證明問題的保障; (3)利用假設(shè)是核心:在第二步證明中一定要利用歸納假設(shè),這是數(shù)學(xué)歸納法的核心環(huán)節(jié),否則這樣的證明就不是數(shù)學(xué)歸納法證明. 一、選擇題 1.在應(yīng)用數(shù)學(xué)歸納法證明凸n邊形的對角線為n(n-3)條時,第一步應(yīng)驗證n等于(  ) A.1 B.2 C.3 D.4 考點(diǎn) 數(shù)學(xué)歸納法定義及原理 題點(diǎn) 數(shù)學(xué)歸納法第一步:歸納奠基 答案 C 解析 由

17、凸多邊形的性質(zhì),應(yīng)先驗證三角形,故選C. 2.某個命題與正整數(shù)有關(guān),如果當(dāng)n=k(k∈N*)時,該命題成立,那么可推得當(dāng)n=k+1時,該命題也成立.現(xiàn)在已知當(dāng)n=5時,該命題成立,那么可推導(dǎo)出(  ) A.當(dāng)n=6時命題不成立 B.當(dāng)n=6時命題成立 C.當(dāng)n=4時命題不成立 D.當(dāng)n=4時命題成立 考點(diǎn) 數(shù)學(xué)歸納法定義及原理 題點(diǎn) 數(shù)學(xué)歸納第二步:歸納遞推 答案 B 3.設(shè)Sk=+++…+,則Sk+1為(  ) A.Sk+ B.Sk++ C.Sk+- D.Sk+- 考點(diǎn) 數(shù)學(xué)歸納法定義及原理 題點(diǎn) 數(shù)學(xué)歸納法第二步:歸納遞推 答案 C 解析 因式子右邊各

18、分?jǐn)?shù)的分母是連續(xù)正整數(shù), 則由Sk=++…+,① 得Sk+1=++…+++.② 由②-①,得Sk+1-Sk=+- =-. 故Sk+1=Sk+-. 4.一個與正整數(shù)n有關(guān)的命題中,當(dāng)n=2時命題成立,且由n=k時命題成立,可以推得n=k+2時命題也成立,則(  ) A.該命題對于n>2的自然數(shù)n都成立 B.該命題對于所有的正偶數(shù)都成立 C.該命題何時成立與k取值無關(guān) D.以上答案都不對 考點(diǎn) 數(shù)學(xué)歸納法定義及原理 題點(diǎn) 數(shù)學(xué)歸納法第二步:歸納遞推 答案 B 解析 由n=k時命題成立,可以推出n=k+2時命題也成立,且使命題成立的第一個正偶數(shù)n0=2.故對所有的正偶數(shù)都

19、成立. 5.設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:“當(dāng)f(k)≥k2成立時,總可推出f(k+1)≥(k+1)2成立”,那么,下列命題總成立的是(  ) A.若f(3)≥9成立,則當(dāng)k≥1時,均有f(k)≥k2成立 B.若f(5)≥25成立,則當(dāng)k≤5時,均有f(k)≥k2成立 C.若f(7)<49成立,則當(dāng)k≥8時,均有f(k)

20、,a1=2,an+1=(n∈N*),依次計算a2,a3,a4,歸納推測出an的通項表達(dá)式為(  ) A. B. C. D. 考點(diǎn) 數(shù)學(xué)歸納法證明數(shù)列問題 題點(diǎn) 利用數(shù)學(xué)歸納法證明數(shù)列通項問題 答案 B 解析 結(jié)合題意,得a1=2,a2=,a3=,a4=,…,可推測an=,故選B. 7.用數(shù)學(xué)歸納法證明等式(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N*)的過程中,從n=k到n=k+1左端需要增乘的代數(shù)式為(  ) A.2k+1 B. C.2(2k+1) D. 考點(diǎn) 數(shù)學(xué)歸納法定義及原理 題點(diǎn) 數(shù)學(xué)歸納法的第二步:歸納遞推 答案 

21、C 解析 當(dāng)n=k+1時,左端為(k+2)(k+3)…[(k+1)+(k-1)]·[(k+1)+k]·(2k+2)=(k+1)(k+2)…(k+k)(2k+1)·2,∴應(yīng)增乘2(2k+1). 二、填空題 8.用數(shù)學(xué)歸納法證明“對于足夠大的自然數(shù)n,總有2n>n3”時,驗證第一步不等式成立所取的第一個值n0最小應(yīng)當(dāng)是________. 考點(diǎn) 數(shù)學(xué)歸納法定義及原理 題點(diǎn) 數(shù)學(xué)歸納法第一步:歸納奠基 答案 10 9.證明:假設(shè)當(dāng)n=k(k∈N*)時等式成立,即2+4+…+2k=k2+k,那么2+4+…+2k+2(k+1)=k2+k+2(k+1)=(k+1)2+(k+1),即當(dāng)n=k+1

22、時等式也成立.因此對于任何n∈N*等式都成立. 以上用數(shù)學(xué)歸納法證明“2+4+…+2n=n2+n(n∈N*)”的過程中的錯誤為_________. 考點(diǎn) 數(shù)學(xué)歸納法定義及原理 題點(diǎn) 數(shù)學(xué)歸納法第二步:歸納遞推 答案 缺少步驟歸納奠基 10.已知f(n)=1+++…+,n∈N*,用數(shù)學(xué)歸納法證明f(2n)>時,f(2n+1)-f(2n)=________________________________________________________________________. 考點(diǎn) 數(shù)學(xué)歸納法定義及原理 題點(diǎn) 數(shù)學(xué)歸納法第二步:歸納遞推 答案 ++…+ 三、解答題 11

23、.用數(shù)學(xué)歸納法證明·…·=(n≥2,n∈N*). 考點(diǎn) 用數(shù)學(xué)歸納法證明等式 題點(diǎn) 利用數(shù)學(xué)歸納法證明等式 證明 (1)當(dāng)n=2時,左邊=1-=, 右邊==, 所以左邊=右邊,所以當(dāng)n=2時等式成立. (2)假設(shè)當(dāng)n=k(k≥2,k∈N*)時等式成立, 即·…·=, 那么當(dāng)n=k+1時,·…·= =· ==, 即當(dāng)n=k+1時,等式成立. 綜合(1)(2)知,對任意n≥2,n∈N*,等式恒成立. 12.用數(shù)學(xué)歸納法證明:+++…+<1-(n≥2,n∈N*). 考點(diǎn) 用數(shù)學(xué)歸納法證明不等式 題點(diǎn) 利用數(shù)學(xué)歸納法證明不等式 證明 (1)當(dāng)n=2時,左式==, 右式

24、=1-=. 因為<,所以不等式成立. (2)假設(shè)當(dāng)n=k(k≥2,k∈N*)時,不等式成立, 即+++…+<1-, 則當(dāng)n=k+1時, +++…++<1-+ =1-=1-<1- =1-, 所以當(dāng)n=k+1時,不等式也成立. 綜上所述,對任意n≥2的正整數(shù),不等式都成立. 四、探究與拓展 13.用數(shù)學(xué)歸納法證明“34n+1+52n+2(n∈N*)能被14整除”時,當(dāng)n=k+1時,34(k+1)+1+52(k+1)+2應(yīng)變形為________________. 考點(diǎn) 數(shù)學(xué)歸納法定義及原理 題點(diǎn) 數(shù)學(xué)歸納法第二步:歸納遞推 答案 34×(34k+1+52k+2)-52k+

25、2×14×4 解析 34(k+1)+1+52(k+1)+2=34×34k+1+52×52k+2=34×34k+1+34×52k+2+52×52k+2-34×52k+2=34×(34k+1+52k+2)-52k+2×(34-52)=34×(34k+1+52k+2)-52k+2×14×4. 14.已知數(shù)列{an}的前n項和Sn=1-nan(n∈N*). (1)計算a1,a2,a3,a4; (2)猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論. 考點(diǎn) 數(shù)學(xué)歸納法證明數(shù)列問題 題點(diǎn) 利用數(shù)學(xué)歸納法證明數(shù)列通項問題 解 (1)計算得a1=;a2=;a3=;a4=. (2)猜想:an=. 下面用數(shù)學(xué)歸納法證明. ①當(dāng)n=1時,猜想顯然成立. ②假設(shè)當(dāng)n=k(k≥1,k∈N*)時,猜想成立, 即ak=, 那么,當(dāng)n=k+1時,Sk+1=1-(k+1)ak+1, 即Sk+ak+1=1-(k+1)ak+1. 又Sk=1-kak=, 所以+ak+1=1-(k+1)ak+1, 從而ak+1==, 即n=k+1時,猜想也成立. 故由①和②可知猜想成立. 16

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!