(江蘇專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題六 第3講 基本不等式及其應(yīng)用學(xué)案 理
《(江蘇專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題六 第3講 基本不等式及其應(yīng)用學(xué)案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《(江蘇專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題六 第3講 基本不等式及其應(yīng)用學(xué)案 理(10頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、第3講 基本不等式及其應(yīng)用 高考定位 高考對本內(nèi)容的考查主要有(1)基本不等式的證明過程,A級要求;(2)利用基本不等式解決簡單的最大(小)值問題,C級要求. 真 題 感 悟 1.(2017·江蘇卷)某公司一年購買某種貨物600噸,每次購買x噸,運(yùn)費(fèi)為6萬元/次,一年的總存儲費(fèi)用為4x萬元.要使一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和最小,則x的值是________. 解析 一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和為y=6×+4x=+4x≥2=240,當(dāng)且僅當(dāng)=4x,即x=30時(shí),y有最小值240. 答案 30 2.(2018·江蘇卷)在△ABC中,角A,B,C所對的邊分別為a,b,c,∠ABC=12
2、0°,∠ABC的平分線交AC于點(diǎn)D,且BD=1,則4a+c的最小值為________. 解析 因?yàn)椤螦BC=120°,∠ABC的平分線交AC于點(diǎn)D,所以∠ABD=∠CBD=60°,由三角形的面積公式可得acsin 120°=a×1×sin 60°+c×1×sin 60°,化簡得ac=a+c,又a>0,c>0,所以+=1,則4a+c=(4a+c)·=5++≥5+2=9,當(dāng)且僅當(dāng)c=2a時(shí)取等號,故4a+c的最小值為9. 答案 9 3.(2016·江蘇卷)已知函數(shù)f(x)=2x+,若對于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,則實(shí)數(shù)m的最大值為________. 解析 由條件知
3、f(2x)=22x+2-2x=(2x+2-x)2-2=(f(x))2-2. ∵f(2x)≥mf(x)-6對于x∈R恒成立,且f(x)>0, ∴m≤對于x∈R恒成立. 又=f(x)+≥2=4,且=4, ∴m≤4,故實(shí)數(shù)m的最大值為4. 答案 4 4.(2016·江蘇卷)在銳角三角形ABC中,若sin A=2sin Bsin C,則tan Atan Btan C的最小值是________. 解析 因?yàn)閟in A=2sin Bsin C,所以sin(B+C)=2sin Bsin C, 所以sin Bcos C+cos Bsin C=2sin Bsin C, 等式兩邊同時(shí)除以cos
4、Bcos C,得tan B+tan C=2tan Btan C. 又因?yàn)閠an A=-tan(B+C)=, 所以tan Atan Btan C-tan A=2tan Btan C,即tan Btan C(tan A-2)=tan A. 因?yàn)锳,B,C為銳角,所以tan A,tan B,tan C>0,且tan A>2, 所以tan Btan C=,所以原式=. 令tan A-2=t(t>0),則===t++4≥8,當(dāng)且僅當(dāng)t=2, 即tan A=4時(shí)取等號.故tan Atan Btan C的最小值為8. 答案 8 考 點(diǎn) 整 合 1.基本不等式≤ (1)基本不等式成立的條件
5、:a≥0,b≥0; (2)等號成立的條件:當(dāng)且僅當(dāng)a=b時(shí)取等號; (3)其中稱為正數(shù)a,b的算術(shù)平均數(shù),稱為正數(shù)a,b的幾何平均數(shù). 2.幾個(gè)重要的不等式 (1)a2+b2≥2ab(a,b∈R),當(dāng)且僅當(dāng)a=b時(shí)取等號; (2)ab≤(a,b∈R),當(dāng)且僅當(dāng)a=b時(shí)取等號; (3)≥(a,b∈R),當(dāng)且僅當(dāng)a=b時(shí)取等號; (4)+≥2(a,b同號),當(dāng)且僅當(dāng)a=b時(shí)取等號. 3.利用基本不等式求最值 已知x≥0,y≥0,則 (1)如果積xy是定值p,那么當(dāng)且僅當(dāng)x=y(tǒng)時(shí),x+y有最小值是2(簡記:積定和最小); (2)如果和x+y是定值s,那么當(dāng)且僅當(dāng)x=y(tǒng)時(shí),xy有
6、最大值是(簡記:和定積最大). 熱點(diǎn)一 配湊法求最值 【例1】 (1)一段長為30 m的籬笆圍成一個(gè)一邊靠墻的矩形菜園,墻長18 m,則這個(gè)矩形的長為________m,寬為________m時(shí)菜園面積最大. (2)(2018·南京、鹽城一模)若實(shí)數(shù)x,y滿足x>y>0,且log2x+log2y=1,則的最小值為________. 解析 (1)設(shè)矩形的長為x m,寬為y m,則x+2y=30.所以S=xy=x·(2y)≤ =,當(dāng)且僅當(dāng)x=2y,即x=15,y=時(shí)取等號. (2)因?yàn)閘og2x+log2y=log2xy=1,所以xy=2.因?yàn)閤>y>0,所以x-y>0.所以==x
7、-y+≥2=4,當(dāng)且僅當(dāng)x-y=2時(shí)取等號. 答案 (1)15 (2)4 探究提高 (1)應(yīng)用基本不等式解題一定要注意應(yīng)用的前提:“一正”“二定”“三相等”.所謂“一正”是指正數(shù),“二定”是指應(yīng)用基本不等式求最值時(shí),和或積為定值,“三相等”是指滿足等號成立的條件. (2)在利用基本不等式求最值時(shí),要根據(jù)式子的特征靈活變形,配湊出積、和為常數(shù)的形式,然后再利用基本不等式. 【訓(xùn)練1】 (1)(2017·宿遷期末)若函數(shù)f(x)=x+(x>2)在x=a處取最小值,則a=________. (2)若對x≥1,不等式x+-1≥a恒成立,則實(shí)數(shù)a的取值范圍是________. 解析 (1
8、)當(dāng)x>2時(shí),x-2>0,f(x)=(x-2)++2≥2+2=4,當(dāng)且僅當(dāng)x-2=(x>2),即x=3時(shí)取等號,即當(dāng)f(x)取得最小值時(shí),即a=3. (2)因?yàn)楹瘮?shù)f(x)=x+-1在[1,+∞)上單調(diào)遞增,所以函數(shù)g(x)=x+1+-2在[0,+∞)上單調(diào)遞增,所以函數(shù)g(x)在[1,+∞)的最小值為g(1)=,因此對x≥1不等式x+-1≥a恒成立,所以a≤g(x)min=. 答案 (1)3 (2) 熱點(diǎn)二 常數(shù)代換或消元法求最值 【例2】 (1)(2018·蘇州期末)已知正實(shí)數(shù)a,b,c,滿足+=1,+=1,則c的取值范圍是________. (2)若正數(shù)x,y滿足x+3y=5
9、xy,則3x+4y的最小值為________. 解析 (1)因?yàn)閍+b=(a+b)=2++∈[4,+∞), 所以∈,從而=1-∈,得c∈. (2)法一 由x+3y=5xy及x,y均為正數(shù)可得+=1, ∴3x+4y=(3x+4y)=+++≥+=5.(當(dāng)且僅當(dāng)=,即x=1,y=時(shí),等號成立), ∴3x+4y的最小值是5. 法二 由x+3y=5xy,得x=,∵x>0,y>0,∴y>, ∴3x+4y=+4y=+4y=+·+4 ≥+2=5,當(dāng)且僅當(dāng)y=時(shí)等號成立, ∴(3x+4y)min=5. 答案 (1) (2)5 探究提高 條件最值的求解通常有三種方法:一是消元法,即根據(jù)條件建
10、立兩個(gè)量之間的函數(shù)關(guān)系,然后代入代數(shù)式轉(zhuǎn)化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構(gòu)造和或積為常數(shù)的式子,然后利用基本不等式求解最值;三是對條件使用基本不等式,建立所求目標(biāo)函數(shù)的不等式求解. 【訓(xùn)練2】 (1)設(shè)a>0,b>0.若a+b=1,則+的最小值是________. (2)(2018·南京模擬)已知x>0,y>0,x+3y+xy=9,則x+3y的最小值為________. 解析 (1)由題意+=+=2++≥2+2=4,當(dāng)且僅當(dāng)=, 即a=b=時(shí),取等號,所以最小值為4. (2)法一 (消元法) 由已知得x=.因?yàn)閤>0,y>0,所以0<y<3, 所以x+3
11、y=+3y=+3(y+1)-6≥2-6=6, 當(dāng)且僅當(dāng)=3(y+1),即y=1,x=3時(shí),(x+3y)min=6. 法二 ∵x>0,y>0,9-(x+3y)=xy=x·(3y)≤·, 當(dāng)且僅當(dāng)x=3y時(shí)等號成立.設(shè)x+3y=t>0,則t2+12t-108≥0, ∴(t-6)(t+18)≥0,又∵t>0,∴t≥6.故當(dāng)x=3,y=1時(shí),(x+3y)min=6. 答案 (1)4 (2)6 熱點(diǎn)三 基本不等式的綜合應(yīng)用 【例3】 (1)設(shè)x,y,z均為大于1的實(shí)數(shù),且z為x和y的等比中項(xiàng),則+的最小值為________. (2)(2016·蘇州暑假測試)設(shè)正四面體ABCD的棱長為,P
12、是棱AB上的任意一點(diǎn)(不與點(diǎn)A,B重合),且點(diǎn)P到平面ACD,平面BCD的距離分別為x,y,則+的最小值是________. 解析 (1)由題意得z2=xy,lg x>0,lg y>0, ∴+=+=+++ =++≥+2=, 當(dāng)且僅當(dāng)=,即lg y=2lg x,即y=x2時(shí)取等號. (2)過點(diǎn)A作AO⊥平面BCD于點(diǎn)O,則O為△BCD的重心, 所以O(shè)B=××=,所以AO==2. 又VP-BCD+VP-ACD=VA-BCD,所以S△BCD·y+S△ACD·x=S△BCD·2,即x+y=2. 所以+=(x+y)=≥2+,當(dāng)且僅當(dāng)x=3-,y=-1時(shí)取等號. 答案 (1) (2)2+
13、 探究提高 基本不等式在涉及求最值的問題中常常與數(shù)列、幾何、函數(shù)性質(zhì)等知識點(diǎn)綜合命題,體現(xiàn)了基本不等式的工具作用,在涉及求含參的問題中常常與恒成立問題、存在性問題綜合考查,但要注意等號的條件. 【訓(xùn)練3】 (1)函數(shù)y=1-2x-(x<0)的值域?yàn)開_______. (2)若不等式x+2≤a(x+y)對任意的實(shí)數(shù)x,y∈(0,+∞)恒成立,則實(shí)數(shù)a的最小值為________. 解析 (1)∵x<0,∴y=1-2x-=1+(-2x)+≥1+2=1+2,當(dāng)且僅當(dāng)x=-時(shí)取等號,故函數(shù)y=1-2x-(x<0)的值域?yàn)閇1+2,+∞). (2)由題意得a≥=恒成立.令t=(t>0),則a≥,
14、 再令1+2t=u(u>1),則t=,故a≥=. 因?yàn)閡+≥2(當(dāng)且僅當(dāng)u=時(shí)等號成立),故u+-2≥2-2, 從而0<≤=,故a≥,即amin=. 答案 (1)[1+2,+∞) (2) 1.多次使用基本不等式的注意事項(xiàng) 當(dāng)多次使用基本不等式時(shí),一定要注意每次是否能保證等號成立,并且要注意取等號的條件的一致性,否則就會(huì)出錯(cuò),因此在利用基本不等式處理問題時(shí),列出等號成立的條件不僅是解題的必要步驟,也是檢驗(yàn)轉(zhuǎn)換是否有誤的一種方法. 2.基本不等式除了在客觀題考查外,在解答題的關(guān)鍵步驟中也往往起到“巧解”的作用,但往往需先變換形式才能應(yīng)用. 3.基本不等式作為求最值的一個(gè)有力工具
15、常與其他知識點(diǎn)綜合命題,注意含參數(shù)問題在恒成立、存在性問題中的合理轉(zhuǎn)化.
一、填空題
1.(2018·蘇、錫、常、鎮(zhèn)四市調(diào)研)已知a>0,b>0,且+=,則ab的最小值是________.
解析 因?yàn)椋剑?,所以ab≥2,當(dāng)且僅當(dāng)==時(shí),取等號.
答案 2
2.若0 16、時(shí),y取到最小值2.
答案 2
4.(2018·天津卷)已知a,b∈R,且a-3b+6=0,則2a+的最小值為________.
解析 由題知a-3b=-6,因?yàn)?a>0,8b>0,所以2a+≥2×=2×=2=,當(dāng)且僅當(dāng)2a=,即a=-3,b=1時(shí)取等號.
答案
5.(2017·北京卷)已知x≥0,y≥0,且x+y=1,則x2+y2的取值范圍是________.
解析 法一 ∵x≥0,y≥0且x+y=1.∴2≤x+y=1,從而0≤xy≤,因此x2+y2=(x+y)2-2xy=1-2xy,所以≤x2+y2≤1.
法二 可轉(zhuǎn)化為線段AB上的點(diǎn)到原點(diǎn)距離平方的范圍,AB上的點(diǎn)到原 17、點(diǎn)距離的范圍為,則x2+y2的取值范圍為.
答案
6.若對于任意x>0,≤a恒成立,則實(shí)數(shù)a的取值范圍是________.
解析?。?,因?yàn)閤>0,所以x+≥2(當(dāng)且僅當(dāng)x=1時(shí)取等號),
則≤=,即的最大值為,故a≥.
答案
7.(2018·鹽城中學(xué)月考)設(shè)a是1+2b與1-2b的等比中項(xiàng),則的最大值為________.
解析 依題意,a2=1-4b2,故a2+4b2=1≥4ab,故ab≤,≤≤,當(dāng)且僅當(dāng)或時(shí),等號成立.
答案
8.(2018·蘇北四市調(diào)研)已知a,b∈R,a+b=4,則+的最大值為________.
解析 法一(ab作為一個(gè)變元) ab≤=4,+== 18、=.設(shè)t=9-ab≥5,則=≤=,當(dāng)且僅當(dāng)t2=80時(shí)等號成立,所以,+的最大值為.
法二(均值換元) 因?yàn)閍+b=4,所以,令a=2+t,b=2-t,則f(t)=+=+=,令u=t2+5≥5,則g(u)==≤=,當(dāng)且僅當(dāng)u=4時(shí)等號成立.所以+的最大值為.
答案
二、解答題
9.(2017·南京、鹽城調(diào)研)設(shè)函數(shù)f(x)=ax2+(b-2)x+3(a≠0).
(1)若不等式f(x)>0的解集為(-1,3),求a,b的值;
(2)若f(1)=2,a>0,b>0,求+的最小值.
解 (1)由題意得即解得
(2)因?yàn)閒(1)=2,所以a+b=1,所以+=(a+b)=5++≥9,
19、
當(dāng)且僅當(dāng)b=2a=時(shí)取等號.所以,+的最小值為9.
10.(1)當(dāng)點(diǎn)(x,y)在直線x+3y-4=0上移動(dòng)時(shí),求3x+27y+2的最小值;
(2)已知x,y都是正實(shí)數(shù),且x+y-3xy+5=0,求xy的最小值.
解 (1)由x+3y-4=0,得x+3y=4,
所以3x+27y+2=3x+33y+2≥2+2=2+2=2+2=20,
當(dāng)且僅當(dāng)3x=33y且x+3y-4=0,
即x=2,y=時(shí)取等號,此時(shí)所求的最小值為20.
(2)由x+y-3xy+5=0,得x+y+5=3xy,
所以2+5≤x+y+5=3xy,所以3xy-2-5≥0,
所以(+1)(3-5)≥0,所以≥,即xy≥,
當(dāng)且僅當(dāng)x=y(tǒng)=時(shí)取等號,故xy的最小值是.
11.已知函數(shù)f(x)=(x≠a,a為非零常數(shù)).
(1)解不等式f(x)
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財(cái)務(wù)管理第六講 營運(yùn)資金管理
- 地圖上的方向
- 地形和表示地形的地圖
- 1讓我們蕩起雙槳講解
- 北師大版二下《美麗的植物園》
- 第六章裝飾裝修工程事故分析與處理
- 審方藥師與藥學(xué)診斷-反沖力課件
- 學(xué)生公寓宿舍設(shè)計(jì)規(guī)劃
- 品質(zhì)管理基礎(chǔ)知識培訓(xùn)課件
- 自行車上的簡單機(jī)械
- 會(huì)計(jì)準(zhǔn)則與會(huì)計(jì)規(guī)范
- 美國大熔爐_英語學(xué)習(xí)_外語學(xué)習(xí)_教育專區(qū)課件
- 手機(jī)證券精準(zhǔn)營銷方案
- 第六章績效管理概述
- 課題3制取氧氣