(通用版)2020高考數(shù)學(xué)一輪復(fù)習(xí) 2.9 函數(shù)模型及其應(yīng)用講義 理
《(通用版)2020高考數(shù)學(xué)一輪復(fù)習(xí) 2.9 函數(shù)模型及其應(yīng)用講義 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《(通用版)2020高考數(shù)學(xué)一輪復(fù)習(xí) 2.9 函數(shù)模型及其應(yīng)用講義 理(15頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第九節(jié)函數(shù)模型及其應(yīng)用 1.幾類函數(shù)模型 函數(shù)模型 函數(shù)解析式 一次函數(shù)模型 f(x)=ax+b(a,b為常數(shù),a≠0) 反比例函數(shù)模型 f(x)=+b(k,b為常數(shù)且k≠0) 二次函數(shù)模型 f(x)=ax2+bx+c(a,b,c為常數(shù),a≠0) 指數(shù)函數(shù)模型 f(x)=bax+c(a,b,c為常數(shù),b≠0,a>0且a≠1) 對(duì)數(shù)函數(shù)模型 f(x)=blogax+c(a,b,c為常數(shù),b≠0,a>0且a≠1) 冪函數(shù)模型 f(x)=axn+b(a,b為常數(shù),a≠0) “對(duì)勾”函數(shù)模型 f(x)=x+(a>0)? 2.三種函數(shù)模型的性質(zhì) 函數(shù)性質(zhì)
2、y=ax(a>1) y=logax(a>1) y=xn(n>0) 在(0,+∞)上的增減性 單調(diào)遞增 單調(diào)遞增 單調(diào)遞增 增長(zhǎng)速度? 越來越快 越來越慢 相對(duì)平穩(wěn) 圖象的變化 隨x的增大,逐漸表現(xiàn)為與y軸平行 隨x的增大,逐漸表現(xiàn)為與x軸平行 隨n值變化而各有不同 值的比較 存在一個(gè)x0,當(dāng)x>x0時(shí),有l(wèi)ogax<xn<ax ?對(duì)勾函數(shù)y=x+(a>0)在(-∞,-]和[,+∞)上單調(diào)遞增,在[-,0)和(0,]上單調(diào)遞減. 當(dāng)x>0時(shí),x=時(shí)取最小值2;當(dāng) x<0時(shí),x=-時(shí)取最大值-2. (1)當(dāng)描述增長(zhǎng)速度變化很快時(shí),選用指數(shù)函數(shù)模型. (2
3、)當(dāng)要求不斷增長(zhǎng),但又不會(huì)增長(zhǎng)過快,也不會(huì)增長(zhǎng)到很大時(shí),選用對(duì)數(shù)函數(shù)模型. (3)冪函數(shù)模型y=xn(n>0)可以描述增長(zhǎng)幅度不同的變化,當(dāng)n值較小(n≤1)時(shí),增長(zhǎng)較慢;當(dāng)n值較大(n>1)時(shí),增長(zhǎng)較快. [小題查驗(yàn)基礎(chǔ)] 一、判斷題(對(duì)的打“√”,錯(cuò)的打“×”) (1)某種商品進(jìn)價(jià)為每件100元,按進(jìn)價(jià)增加10%出售,后因庫(kù)存積壓降價(jià),若按九折出售,則每件還能獲利.( ) (2)函數(shù)y=2x的函數(shù)值比y=x2的函數(shù)值大.( ) (3)不存在x0,使ax0<x<logax0.( ) (4)在(0,+∞)上,隨著x的增大,y=ax(a>1)的增長(zhǎng)速度會(huì)超過并遠(yuǎn)遠(yuǎn)大于y=xa
4、(a>0)的增長(zhǎng)速度.( ) (5)“指數(shù)爆炸”是指數(shù)型函數(shù)y=a·bx+c(a≠0,b>0,b≠1)增長(zhǎng)速度越來越快的形象比喻.( ) 答案:(1)× (2)× (3)× (4)√ (5)× 二、選填題 1.下表是函數(shù)值y隨自變量x變化的一組數(shù)據(jù),它最可能的函數(shù)模型是( ) x 4 5 6 7 8 9 10 y 15 17 19 21 23 25 27 A.一次函數(shù)模型 B.冪函數(shù)模型 C.指數(shù)函數(shù)模型 D.對(duì)數(shù)函數(shù)模型 解析:選A 根據(jù)已知數(shù)據(jù)可知,自變量每增加1,函數(shù)值增加2,因此函數(shù)值的增量是均勻的,故為一次函數(shù)模型. 2
5、.小明騎車上學(xué),開始時(shí)勻速行駛,途中因交通堵塞停留了一段時(shí)間,后為了趕時(shí)間加快速度行駛.與以上事件吻合得最好的圖象是( ) 解析:選C 小明勻速行駛時(shí),圖象為一條直線,且距離學(xué)校越來越近,故排除A.因交通堵塞停留了一段時(shí)間,與學(xué)校的距離不變,故排除D.后來為了趕時(shí)間加快速度行駛,故排除B.故選C. 3.某種細(xì)菌在培養(yǎng)過程中,每15分鐘分裂一次(由一個(gè)分裂成兩個(gè)),這種細(xì)菌由1個(gè)繁殖成4 096個(gè)需經(jīng)過________小時(shí). 解析:設(shè)需經(jīng)過t小時(shí),由題意知24t=4 096,即16t=4 096,解得t=3. 答案:3 4.某城市客運(yùn)公司確定客票價(jià)格的方法是:如果行程不超過100
6、 km,票價(jià)是0.5元/km;如果超過100 km,超過100 km的部分按0.4元/km定價(jià),則客運(yùn)票價(jià)y(元)與行程千米數(shù)x(km)之間的函數(shù)關(guān)系式是____________. 解析:由題意可得y= 答案:y= 5.生產(chǎn)一定數(shù)量商品的全部費(fèi)用稱為生產(chǎn)成本,某企業(yè)一個(gè)月生產(chǎn)某種商品x萬件時(shí)的生產(chǎn)成本為C(x)=x2+2x+20(萬元).一萬件售價(jià)是20萬元,為獲取最大利潤(rùn),該企業(yè)一個(gè)月應(yīng)生產(chǎn)該商品數(shù)量為________萬件. 解析:設(shè)利潤(rùn)為L(zhǎng)(x),則利潤(rùn)L(x)=20x-C(x)=-(x-18)2+142,當(dāng)x=18時(shí),L(x)有最大值. 答案:18 [典例精析] 加
7、工爆米花時(shí),爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時(shí)間t(單位:分鐘)滿足函數(shù)關(guān)系p=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三次實(shí)驗(yàn)的數(shù)據(jù).根據(jù)上述函數(shù)模型和實(shí)驗(yàn)數(shù)據(jù),可以得到最佳加工時(shí)間為________分鐘. [解析] 根據(jù)圖表,把(t,p)的三組數(shù)據(jù)(3,0.7),(4,0.8),(5,0.5)分別代入函數(shù)關(guān)系式, 聯(lián)立方程組得 消去c化簡(jiǎn)得解得 所以p=-0.2t2+1.5t-2 =-+-2 =-2+, 所以當(dāng)t==3.75時(shí),p取得最大值,即最佳加工時(shí)間為3.75分鐘. [答案] 3.75 [解題技法] 求解
8、所給函數(shù)模型解決實(shí)際問題的關(guān)注點(diǎn) (1)認(rèn)清所給函數(shù)模型,弄清哪些量為待定系數(shù). (2)根據(jù)已知利用待定系數(shù)法,確定模型中的待定系數(shù). (3)利用該模型求解實(shí)際問題. [過關(guān)訓(xùn)練] 1.某市家庭煤氣的使用量x(m3)和煤氣費(fèi)f(x)(元)滿足關(guān)系f(x)=已知某家庭2018年前三個(gè)月的煤氣費(fèi)如表: 月份 用氣量 煤氣費(fèi) 一月份 4 m3 4元 二月份 25 m3 14元 三月份 35 m3 19元 若四月份該家庭使用了20 m3的煤氣,則其煤氣費(fèi)為( ) A.11.5元 B.11元 C.10.5元 D.10元 解析:選A 根據(jù)題意可知
9、f(4)=C=4,f(25)=C+B(25-A)=14,f(35)=C+B(35-A)=19,解得A=5,B=,C=4,所以f(x)=所以f(20)=4+×(20-5)=11.5. 2.某商場(chǎng)從生產(chǎn)廠家以每件20元的價(jià)格購(gòu)進(jìn)一批商品,若該商品零售價(jià)定為p元,銷售量為Q件,則銷售量Q(單位:件)與零售價(jià)p(單位:元)有如下關(guān)系:Q=8 300-170p-p2,則最大毛利潤(rùn)為(毛利潤(rùn)=銷售收入-進(jìn)貨支出)( ) A.30元 B.60元 C.28 000元 D.23 000元 解析:選D 設(shè)毛利潤(rùn)為L(zhǎng)(p)元, 則由題意知L(p)=pQ-20Q=Q(p-20) =(8
10、300-170p-p2)(p-20) =-p3-150p2+11 700p-166 000, 所以L′(p)=-3p2-300p+11 700. 令L′(p)=0, 解得p=30或p=-130(舍去). 當(dāng)p∈(0,30)時(shí),L′(p)>0,當(dāng)p∈(30,+∞)時(shí),L′(p)<0,故L(p)在p=30時(shí)取得極大值,即最大值,且最大值為L(zhǎng)(30)=23 000. [分類例析] 類型(一) 構(gòu)建一、二次函數(shù)模型 [例1] 某企業(yè)為打入國(guó)際市場(chǎng),決定從A,B兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn),已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表(單位:萬美元): 項(xiàng)目 類別 年固定成本
11、 每件產(chǎn)品成本 每件產(chǎn)品銷售價(jià) 每年最多可生產(chǎn)的件數(shù) A產(chǎn)品 20 m 10 200 B產(chǎn)品 40 8 18 120 其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),m為待定常數(shù),其值由生產(chǎn)A產(chǎn)品的原料價(jià)格決定,預(yù)計(jì)m∈[6,8],另外,年銷售x件B產(chǎn)品時(shí)需上交0.05x2萬美元的特別關(guān)稅,假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去. (1)寫出該廠分別投資生產(chǎn)A,B兩種產(chǎn)品的年利潤(rùn)y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x1,x2之間的函數(shù)關(guān)系式,并指明定義域; (2)如何投資才可獲得最大年利潤(rùn)?請(qǐng)你做出規(guī)劃. [解] (1)由題意得y1=10x1-(20+mx1)=(10-m)x1-2
12、0(0≤x1≤200且x1∈N), y2=18x2-(40+8x2)-0.05x=-0.05x+10x2-40 =-0.05(x2-100)2+460(0≤x2≤120且x2∈N). (2)∵6≤m≤8,∴10-m>0, ∴y1=(10-m)x1-20為增函數(shù). 又0≤x1≤200,x1∈N, ∴當(dāng)x1=200時(shí),生產(chǎn)A產(chǎn)品的最大利潤(rùn)為(10-m)×200-20=1 980-200m(萬美元). ∵y2=-0.05(x2-100)2+460(0≤x2≤120,且x2∈N), ∴當(dāng)x2=100時(shí),生產(chǎn)B產(chǎn)品的最大利潤(rùn)為460萬美元. (y1)max-(y2)max=(1 980
13、-200m)-460=1 520-200m. 易知當(dāng)6≤m<7.6時(shí),(y1)max>(y2)max. 即當(dāng)6≤m<7.6時(shí),投資生產(chǎn)A產(chǎn)品200件可獲得最大年利潤(rùn); 當(dāng)m=7.6時(shí),投資生產(chǎn)A產(chǎn)品200件或投資生產(chǎn)B產(chǎn)品100件,均可獲得最大年利潤(rùn); 當(dāng)7.6<m≤8時(shí),投資生產(chǎn)B產(chǎn)品100件可獲得最大年利潤(rùn). 解決一、二次函數(shù)模型問題的3個(gè)注意點(diǎn) (1)二次函數(shù)的最值一般利用配方法與函數(shù)的單調(diào)性解決,但一定要密切注意函數(shù)的定義域,否則極易出錯(cuò); (2)確定一次函數(shù)模型時(shí),一般是借助兩個(gè)點(diǎn)來確定,常用待定系數(shù)法; (3)解決函數(shù)應(yīng)用問題時(shí),最后要還原到實(shí)際問題.
14、 類型(二) 構(gòu)建指數(shù)函數(shù)、對(duì)數(shù)函數(shù)模型 [例2] (1)某公司為激勵(lì)創(chuàng)新,計(jì)劃逐年加大研發(fā)資金投入.若該公司2016年全年投入研發(fā)資金130萬元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長(zhǎng)12%,則該公司全年投入的研發(fā)資金開始超過200萬元的年份是( ) (參考數(shù)據(jù):lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A.2018年 B.2019年 C.2020年 D.2021年 (2)某食品的保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)藏溫度x(單位:℃)滿足函數(shù)關(guān)系y=ekx+b(e=2.718…為自然對(duì)數(shù)的底數(shù),k,b為常數(shù)).若該食品在0 ℃的保
15、鮮時(shí)間是192小時(shí),在22 ℃的保鮮時(shí)間是48小時(shí),則該食品在33 ℃的保鮮時(shí)間是( ) A.16小時(shí) B.20小時(shí) C.24小時(shí) D.28小時(shí) [解析] (1)設(shè)第n(n∈N*)年該公司全年投入的研發(fā)資金開始超過200萬元. 根據(jù)題意得130(1+12%)n-1>200, 則lg[130(1+12%)n-1]>lg 200, ∴l(xiāng)g 130+(n-1)lg 1.12>lg 2+2, ∴2+lg 1.3+(n-1)lg 1.12>lg 2+2, ∴0.11+(n-1)×0.05>0.30,解得n>, 又∵n∈N*,∴n≥5,∴該公司全年投入的研發(fā)資金開始超過200萬元的
16、年份是2020年.故選C. (2)由已知得192=eb,① 48=e22k+b=e22k·eb,② 將①代入②得e22k=,則e11k=, 當(dāng)x=33時(shí),y=e33k+b=e33k·eb=3×192=24,所以該食品在33 ℃的保鮮時(shí)間是24小時(shí).故選C. [答案] (1)C (2)C 指數(shù)函數(shù)與對(duì)數(shù)函數(shù)模型的應(yīng)用技巧 (1)要先學(xué)會(huì)合理選擇模型,指數(shù)函數(shù)模型是增長(zhǎng)速度越來越快(底數(shù)大于1)的一類函數(shù)模型,與增長(zhǎng)率、銀行利率有關(guān)的問題都屬于指數(shù)函數(shù)模型. (2)在解決指數(shù)函數(shù)、對(duì)數(shù)函數(shù)模型問題時(shí),一般先需要通過待定系數(shù)法確定函數(shù)解析式,再借助函數(shù)的圖象求解最值問題.
17、 類型(三) 構(gòu)建y=ax+的函數(shù)模型 [例3] 某養(yǎng)殖場(chǎng)需定期購(gòu)買飼料,已知該場(chǎng)每天需要飼料200千克,每千克飼料的價(jià)格為1.8元,飼料的保管費(fèi)與其他費(fèi)用平均每千克每天0.03元,購(gòu)買飼料每次支付運(yùn)費(fèi)300元.求該場(chǎng)多少天購(gòu)買一次飼料才能使平均每天支付的總費(fèi)用最少. [解] 設(shè)該場(chǎng)x(x∈N*)天購(gòu)買一次飼料可使平均每天支付的總費(fèi)用最少,平均每天支付的總費(fèi)用為y元. 因?yàn)轱暳系谋9苜M(fèi)與其他費(fèi)用每天比前一天少200×0.03=6(元),所以x天飼料的保管費(fèi)與其他費(fèi)用共是6(x-1)+6(x-2)+…+6=(3x2-3x)(元). 從而有y=(3x2-3x+300)+200×1.8=
18、+3x+357≥417,當(dāng)且僅當(dāng)=3x,即x=10時(shí),y有最小值.故該場(chǎng)10天購(gòu)買一次飼料才能使平均每天支付的總費(fèi)用最少. 應(yīng)用函數(shù)f(x)=ax+模型的關(guān)鍵點(diǎn) (1)明確對(duì)勾函數(shù)是正比例函數(shù)f(x)=ax與反比例函數(shù)f(x)=疊加而成的. (2)解決實(shí)際問題時(shí)一般可以直接建立f(x)=ax+的模型,有時(shí)可以將所列函數(shù)關(guān)系式轉(zhuǎn)化為f(x)=ax+的形式. (3)利用模型f(x)=ax+求解最值時(shí),要注意自變量的取值范圍,及取得最值時(shí)等號(hào)成立的條件. 類型(四) 構(gòu)建分段函數(shù)模型 [例4] 某景區(qū)提供自行車出租,該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是
19、每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛.為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求租自行車一日的總收入必須高于這一日的管理費(fèi)用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后得到的部分). (1)求函數(shù)y=f(x)的解析式; (2)試問當(dāng)每輛自行車的日租金為多少元時(shí),才能使一日的凈收入最多? [解] (1)當(dāng)x≤6時(shí),y=50x-115, 令50x-115>0,解得x>2.3, ∵x為整數(shù),∴3≤x≤6,x∈Z. 當(dāng)x>6時(shí),y=[50-3(x-6
20、)]x-115=-3x2+68x-115. 令-3x2+68x-115>0,有3x2-68x+115<0,結(jié)合x為整數(shù)得6<x≤20,x∈Z. ∴f(x)= (2)對(duì)于y=50x-115(3≤x≤6,x∈Z), 顯然當(dāng)x=6時(shí),ymax=185; 對(duì)于y=-3x2+68x-115 =-32+(6<x≤20,x∈Z), 當(dāng)x=11時(shí),ymax=270. ∵270>185,∴當(dāng)每輛自行車的日租金定為11元時(shí),才能使一日的凈收入最多. 解決分段函數(shù)模型問題的3個(gè)注意點(diǎn) (1)實(shí)際問題中有些變量間的關(guān)系不能用同一個(gè)關(guān)系式給出,而是由幾個(gè)不同的關(guān)系式構(gòu)成,如出租車票價(jià)與路程之間的
21、關(guān)系,應(yīng)構(gòu)建分段函數(shù)模型求解; (2)構(gòu)造分段函數(shù)時(shí),要力求準(zhǔn)確、簡(jiǎn)捷,做到分段合理、不重不漏; (3)分段函數(shù)的最值是各段的最大(最小)值的最大(最小)者. [共性歸納] 建立函數(shù)模型解應(yīng)用題的4步驟 審題 弄清題意,分清條件和結(jié)論,理順數(shù)量關(guān)系,初步選擇模型 建模 將文字語言轉(zhuǎn)化為數(shù)學(xué)語言,利用數(shù)學(xué)知識(shí),建立相應(yīng)的數(shù)學(xué)模型 求模 求解數(shù)學(xué)模型,得出數(shù)學(xué)結(jié)論 還原 將利用數(shù)學(xué)知識(shí)和方法得出的結(jié)論,還原到實(shí)際問題中 [過關(guān)訓(xùn)練] 1.某電信公司推出兩種手機(jī)收費(fèi)方式:A種方式是月租20元,B種方式是月租0元.一個(gè)月的本地網(wǎng)內(nèi)打出電話時(shí)間t(分鐘)與打出
22、電話費(fèi)s(元)的函數(shù)關(guān)系如圖,當(dāng)通話150分鐘時(shí),這兩種方式電話費(fèi)相差( ) A.10元 B.20元 C.30元 D.元 解析:選A 設(shè)A種方式對(duì)應(yīng)的函數(shù)解析式為s=k1t+20,B種方式對(duì)應(yīng)的函數(shù)解析式為s=k2t, 當(dāng)t=100時(shí),100k1+20=100k2, 化簡(jiǎn)得k2-k1=. 當(dāng)t=150時(shí),150k2-150k1-20=150×-20=10(元). 2.某新型企業(yè)為獲得更大利潤(rùn),須不斷加大投資,若預(yù)計(jì)年利潤(rùn)低于10%時(shí),則該企業(yè)就考慮轉(zhuǎn)型,下表顯示的是某企業(yè)幾年來利潤(rùn)y(百萬元)與年投資成本x(百萬元)變化的一組數(shù)據(jù): 年份 2015 2016 201
23、7 2018 投資成本x 3 5 9 17 … 年利潤(rùn)y 1 2 3 4 … 給出以下3個(gè)函數(shù)模型:①y=kx+b(k≠0);②y=abx(a≠0,b>0,且b≠1);③y=loga(x+b)(a>0,且a≠1). (1)選擇一個(gè)恰當(dāng)?shù)暮瘮?shù)模型來描述x,y之間的關(guān)系; (2)試判斷該企業(yè)年利潤(rùn)超過6百萬元時(shí),該企業(yè)是否要考慮轉(zhuǎn)型. 解:(1)將(3,1),(5,2)代入y=kx+b(k≠0), 得解得∴y=x-. 當(dāng)x=9時(shí),y=4,不符合題意; 將(3,1),(5,2)代入y=abx(a≠0,b>0,且b≠1), 得解得 ∴y=·x=2. 當(dāng)
24、x=9時(shí),y=2=8,不符合題意; 將(3,1),(5,2)代入y=loga(x+b)(a>0,且a≠1), 得解得∴y=log2(x-1). 當(dāng)x=9時(shí),y=log28=3; 當(dāng)x=17時(shí),y=log216=4. 故可用③來描述x,y之間的關(guān)系. (2)令log2(x-1)≥6,則x≥65. ∵年利潤(rùn)<10%,∴該企業(yè)要考慮轉(zhuǎn)型. 1.某品牌電視新品投放市場(chǎng)后第一個(gè)月銷售100臺(tái),第二個(gè)月銷售200臺(tái),第三個(gè)月銷售400臺(tái),第四個(gè)月銷售790臺(tái),則下列函數(shù)模型
25、中能較好地反映銷售y(單位:臺(tái))與投放市場(chǎng)的月數(shù)x之間關(guān)系的是( ) A.y=100x B.y=50x2-50x+100 C.y=50×2x D.y=100log2x+100 解析:選C 根據(jù)函數(shù)模型的增長(zhǎng)差異和題目中的數(shù)據(jù)可知,應(yīng)為指數(shù)型函數(shù)模型,代入數(shù)據(jù)驗(yàn)證即可,故選C. 2.某家具的標(biāo)價(jià)為132元,若降價(jià)以九折出售(即優(yōu)惠10%),仍可獲利10%(相對(duì)于進(jìn)價(jià)),則該家具的進(jìn)價(jià)是( ) A.118元 B.105元 C.106元 D.108元 解析:選D 設(shè)進(jìn)價(jià)為a元,由題意知132×(1-10%)-a=10%·a,解得a=108.故選D. 3.(20
26、18·北京石景山聯(lián)考)小明在如圖1所示的跑道上勻速跑步,他從點(diǎn)A出發(fā),沿箭頭方向經(jīng)過點(diǎn)B跑到點(diǎn)C,共用時(shí)30 s,他的教練選擇了一個(gè)固定的位置觀察小明跑步的過程,設(shè)小明跑步的時(shí)間為t(s),他與教練間的距離為y(m),表示y與t的函數(shù)關(guān)系的圖象大致如圖2所示,則這個(gè)固定位置可能是圖1中的( ) A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q 解析:選D 假設(shè)這個(gè)位置在點(diǎn)M,則從A至B這段時(shí)間,y不隨時(shí)間的變化改變,與函數(shù)圖象不符,故A選項(xiàng)錯(cuò)誤;假設(shè)這個(gè)位置在點(diǎn)N,則從A至C這段時(shí)間,A點(diǎn)與C點(diǎn)對(duì)應(yīng)y的大小應(yīng)該相同,與函數(shù)圖象不符,故B選項(xiàng)錯(cuò)誤;假設(shè)這個(gè)位置在點(diǎn)P,則由函數(shù)圖象可得,從A
27、到C的過程中,會(huì)有一個(gè)時(shí)刻,教練到小明的距離等于經(jīng)過30 s時(shí)教練到小明的距離,而點(diǎn)P不符合這個(gè)條件,故C選項(xiàng)錯(cuò)誤;經(jīng)判斷點(diǎn)Q符合函數(shù)圖象,故D選項(xiàng)正確,選D. 4.(2019·洛陽模擬)某校為了規(guī)范教職工績(jī)效考核制度,現(xiàn)準(zhǔn)備擬定一函數(shù)用于根據(jù)當(dāng)月評(píng)價(jià)分?jǐn)?shù)x(正常情況下0≤x≤100,且教職工平均月評(píng)價(jià)分?jǐn)?shù)在50分左右,若有突出貢獻(xiàn)可以高于100分)計(jì)算當(dāng)月績(jī)效工資y(元).要求績(jī)效工資不低于500元,不設(shè)上限,且讓大部分教職工績(jī)效工資在600元左右,另外績(jī)效工資越低或越高時(shí),人數(shù)要越少.則下列函數(shù)最符合要求的是( ) A.y=(x-50)2+500 B.y=10+500 C.y=(
28、x-50)3+625 D.y=50[10+lg(2x+1)] 解析:選C 由題意知,擬定函數(shù)應(yīng)滿足:①是單調(diào)遞增函數(shù),且增長(zhǎng)速度先快后慢再快;②在x=50左右增長(zhǎng)速度較慢,最小值為500.A中,函數(shù)y=(x-50)2+500先減后增,不符合要求;B中,函數(shù)y=10+500是指數(shù)型函數(shù),增長(zhǎng)速度是越來越快,不符合要求;D中,函數(shù)y=50[10+lg(2x+1)]是對(duì)數(shù)型函數(shù),增長(zhǎng)速度是越來越慢,不符合要求;而C中,函數(shù)y=(x-50)3+625是由函數(shù)y=x3經(jīng)過平移和伸縮變換得到的,符合要求.故選C. 5.(2019·邯鄲名校聯(lián)考)某企業(yè)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi)對(duì)甲產(chǎn)品進(jìn)行促銷宣傳,在一年內(nèi)
29、預(yù)計(jì)銷售量y(萬件)與廣告費(fèi)x(萬元)之間的函數(shù)關(guān)系為y=1+(x≥0).已知生產(chǎn)此產(chǎn)品的年固定投入為4萬元,每生產(chǎn)1萬件此產(chǎn)品仍需再投入30萬元,且能全部售完. 若每件甲產(chǎn)品售價(jià)(元)定為“平均每件甲產(chǎn)品所占生產(chǎn)成本的150%”與“年平均每件甲產(chǎn)品所占廣告費(fèi)的50%”之和,則當(dāng)廣告費(fèi)為1萬元時(shí),該企業(yè)甲產(chǎn)品的年利潤(rùn)為( ) A.30.5萬元 B.31.5萬元 C.32.5萬元 D.33.5萬元 解析:選B 由題意,產(chǎn)品的生產(chǎn)成本為(30y+4)萬元,銷售單價(jià)為×150%+×50%,故年銷售收入為z=·y=45y+6+x.∴年利潤(rùn)W=z-(30y+4)-x=15y+2-=17+-(
30、萬元).∴當(dāng)廣告費(fèi)為1萬元時(shí),即x=1,該企業(yè)甲產(chǎn)品的年利潤(rùn)為17+-=31.5(萬元).故選B. 6.?dāng)M定甲、乙兩地通話m分鐘的電話費(fèi)(單位:元)由f(m)=1.06(0.5[m]+1)給出,其中m>0,[m]是不超過m的最大整數(shù)(如[3]=3,[3.7]=3,[3.1]=3),則甲、乙兩地通話6.5分鐘的電話費(fèi)為________元. 解析:∵m=6.5,∴[m]=6,則f(m)=1.06×(0.5×6+1)=4.24. 答案:4.24 7.(2019·唐山模擬)某人計(jì)劃購(gòu)買一輛A型轎車,售價(jià)為14.4萬元,購(gòu)買后轎車每年的保險(xiǎn)費(fèi)、汽油費(fèi)、車檢費(fèi)、停車費(fèi)等約需2.4萬元,同時(shí)汽車年折
31、舊率約為10%(即這輛車每年減少它的價(jià)值的10%),試問,大約使用________年后,用在該車上的費(fèi)用(含折舊費(fèi))達(dá)到14.4萬元. 解析:設(shè)使用x年后花費(fèi)在該車上的費(fèi)用達(dá)到14.4萬元,依題意可得,14.4(1-0.9x)+2.4x=14.4. 化簡(jiǎn)得x-6×0.9x=0. 令f(x)=x-6×0.9x, 易得f(x)為單調(diào)遞增函數(shù),又f(3)=-1.374<0,f(4)=0.063 4>0,所以函數(shù)f(x)在(3,4)上有一個(gè)零點(diǎn). 故大約使用4年后,用在該車上的費(fèi)用達(dá)到14.4萬元. 答案:4 8.某地區(qū)要建造一條防洪堤,其橫斷面為等腰梯形ABCD,腰與底邊夾角為60°(
32、如圖),考慮防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其橫斷面面積為9平方米,且高度不低于米.記防洪堤橫斷面的腰長(zhǎng)為x米,外周長(zhǎng)(梯形的上底線段BC與兩腰長(zhǎng)的和)為y米.要使防洪堤橫斷面的外周長(zhǎng)不超過10.5米,則其腰長(zhǎng)x的取值范圍為________. 解析:根據(jù)題意知,9=(AD+BC)h,其中AD=BC+2×=BC+x,h=x, 所以9=(2BC+x)x,得BC=-, 由得2≤x<6. 所以y=BC+2x=+(2≤x<6), 由y=+≤10.5,解得3≤x≤4. 因?yàn)閇3,4] ?[2,6),所以腰長(zhǎng)x的取值范圍為[3,4]. 答案:[3,4] 9.如圖,已知邊長(zhǎng)為8米的正方形鋼板
33、有一個(gè)角被銹蝕,其中AE=4米,CD=6米.為了合理利用這塊鋼板,在五邊形ABCDE內(nèi)截取一個(gè)矩形BNPM,使點(diǎn)P在邊DE上. (1)設(shè)MP=x米,PN=y(tǒng)米,將y表示成x的函數(shù),并求該函數(shù)的解析式及定義域; (2)求矩形BNPM面積的最大值. 解:(1)如圖,作PQ⊥AF于Q,所以PQ=8-y,EQ=x-4, 在△EDF中,=, 所以=, 所以y=-x+10, 定義域?yàn)閧x|4≤x≤8}. (2)設(shè)矩形BNPM的面積為S, 則S(x)=xy=x=-(x-10)2+50, 所以S(x)是關(guān)于x的二次函數(shù),且其圖象開口向下,對(duì)稱軸為直線x=10,所以當(dāng)x∈[4,8]時(shí),S(x
34、)單調(diào)遞增, 所以當(dāng)x=8時(shí),矩形BNPM的面積取得最大值,最大值為48平方米. 10.近年來,某企業(yè)平均每年繳納的電費(fèi)約24萬元,為了節(jié)能減排,決定安裝一個(gè)可使用15年的太陽能供電設(shè)備接入本企業(yè)電網(wǎng),安裝這種供電設(shè)備的費(fèi)用(單位:萬元)與太陽能電池板的面積(單位:平方米)成正比,比例系數(shù)約為0.5.為了保證正常用電,安裝后采用太陽能和電能互補(bǔ)供電的模式.假設(shè)在此模式下,安裝后該企業(yè)平均每年繳納的電費(fèi)C(單位:萬元)與安裝的這種太陽能電池板的面積x(單位:平方米)之間的函數(shù)關(guān)系是C(x)=(x≥0,k為常數(shù)) .記y為該企業(yè)安裝這種太陽能供電設(shè)備的費(fèi)用與該企業(yè)今后15年共將繳納的電費(fèi)之和.
35、 (1)試解釋C(0)的實(shí)際意義,并建立y關(guān)于x的函數(shù)關(guān)系式; (2)當(dāng)x為多少時(shí),y取得最小值?最小值是多少萬元? 解:(1)C(0)的實(shí)際意義是安裝這種太陽能電池板的面積為0時(shí)該企業(yè)平均每年繳納的電費(fèi),即未安裝太陽能供電設(shè)備時(shí),該企業(yè)平均每年繳納的電費(fèi).由C(0)==24,得k=2 400, 所以y=15×+0.5x=+0.5x(x≥0). (2)因?yàn)閥=+0.5(x+5)-2.5≥2-2.5=57.5, 當(dāng)且僅當(dāng)=0.5(x+5),即x=55時(shí)取等號(hào), 所以當(dāng)x為55時(shí),y取得最小值,最小值為57.5萬元. 11.[選做題]某快遞公司在某市的貨物轉(zhuǎn)運(yùn)中心,擬引進(jìn)智能機(jī)器人
36、分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購(gòu)買x臺(tái)機(jī)器人的總成本p(x)=萬元. (1)若使每臺(tái)機(jī)器人的平均成本最低,問應(yīng)買多少臺(tái)? (2)現(xiàn)按(1)中的數(shù)量購(gòu)買機(jī)器人,需要安排m人將郵件放在機(jī)器人上,機(jī)器人將郵件送達(dá)指定落袋格口完成分揀,經(jīng)實(shí)驗(yàn)知,每臺(tái)機(jī)器人的日平均分揀量q(m)=(單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1 200件,問引進(jìn)機(jī)器人后,日平均分揀量達(dá)最大值時(shí),用人數(shù)量比引進(jìn)機(jī)器人前的用人數(shù)量最多可減少百分之幾? 解:(1)由總成本p(x)=萬元,可得每臺(tái)機(jī)器人的平均成本y===x++1≥2+1=2.當(dāng)且僅當(dāng)x=,即x=300時(shí),上式等號(hào)成立.∴若使每臺(tái)機(jī)器人的平均成本最低,應(yīng)買300臺(tái). (2)引進(jìn)機(jī)器人后,每臺(tái)機(jī)器人的日平均分揀量 q(m)=當(dāng)1≤m≤30時(shí),300臺(tái)機(jī)器人的日平均分揀量為160m(60-m)=-160m2+9 600m,∴當(dāng)m=30時(shí),日平均分揀量有最大值144 000件.當(dāng)m>30時(shí),日平均分揀量為480×300=144 000(件).∴300臺(tái)機(jī)器人的日平均分揀量的最大值為144 000件.若傳統(tǒng)人工分揀144 000件,則需要人數(shù)為=120(人).∴日平均分揀量達(dá)最大值時(shí),用人數(shù)量比引進(jìn)機(jī)器人前的用人數(shù)量最多可減少×100%=75%. 15
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購(gòu)管理4
- 手術(shù)室的安全管理教材
- 圖表文轉(zhuǎn)換之徽標(biāo)..課件
- 3.2.1古典概型
- 廣泛的民主權(quán)利 (3)
- 3.3公式法(1)
- 哲學(xué)家和船夫的故事
- 古詩(shī)十九首-行行重行行
- 第8章 財(cái)務(wù)報(bào)表
- 戰(zhàn)略性績(jī)效管理篇_方振邦
- 銅梁總規(guī)分析課件
- 1.2有理數(shù) (3)
- 第二章市場(chǎng)經(jīng)濟(jì)體制-第一章政治經(jīng)濟(jì)學(xué)研究對(duì)象與經(jīng)濟(jì)制度
- 彌漫大B細(xì)胞淋巴瘤一線治療新標(biāo)準(zhǔn)課件
- 對(duì)公信貸政策知識(shí)培訓(xùn)