《2022-2023學(xué)年高二數(shù)學(xué)下學(xué)期期中試題 文(重點(diǎn)班)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2022-2023學(xué)年高二數(shù)學(xué)下學(xué)期期中試題 文(重點(diǎn)班)(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022-2023學(xué)年高二數(shù)學(xué)下學(xué)期期中試題 文(重點(diǎn)班)
時(shí)間:120分鐘 總分:150分
一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求)
1. 如果,則下列不等式成立的是
A. B. C. D.
2. 不等式成立的一個(gè)充分不必要條件是
A.或 B. C.或 D.
3.拋物線(xiàn)的準(zhǔn)線(xiàn)方程為,則實(shí)數(shù)的值為
A. B. C. D.
4. 已知圓的極坐標(biāo)方程為,則其圓心坐標(biāo)為
A. B. C. D.
5.將的橫坐標(biāo)壓縮為原來(lái)的,縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,則曲線(xiàn)的方程變?yōu)椤 ?
A.
2、B. C. D.
6.已知是橢圓上任意一點(diǎn),則點(diǎn)到的距離的最大值為
A. B. C. D.
7.已知函數(shù)的導(dǎo)函數(shù)為,且滿(mǎn)足(e),則(e)
A. B. C. D.
8. 斜率為且過(guò)拋物線(xiàn)焦點(diǎn)的直線(xiàn)交拋物線(xiàn)于、兩點(diǎn),若,
則實(shí)數(shù) 為
A.3 B.2 C.5 D.4
9. 給出下列四個(gè)命題:
①若命題,則;
②若為的極值點(diǎn),則”的逆命題為真命題;
③“平面向量的夾角是鈍角”的一個(gè)充分不必要條件是“”;
④命題“,使得”的否定是:“,均有”.
其中正確的個(gè)數(shù)是
A.1 B.2 C.3 D.0
10. 設(shè),,,且,則的最小值
A. B. C. D.1
3、
11.設(shè)雙曲線(xiàn)的右焦點(diǎn)為,為坐標(biāo)原點(diǎn),若雙曲線(xiàn)及其漸近線(xiàn)上各存在一點(diǎn),,使得四邊形為矩形,則其離心率為
A. B. C. D.2
12.已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù),若存在實(shí)數(shù)使得,則實(shí)數(shù)的值為
A. B. C. D.
二、填空題(共4小題,每小題5分,共20分)
13.已知雙曲線(xiàn)的左右焦點(diǎn)為,且,則到一漸近線(xiàn)的距離為 .
14.已知函數(shù)+2在上單調(diào)遞增,則的取值范圍是 .
15. 拋物線(xiàn)的焦點(diǎn)為,動(dòng)點(diǎn)在拋物線(xiàn)上,點(diǎn),當(dāng)取得最大值時(shí),直線(xiàn)的方程為 ?。?
16.若定義域?yàn)榈暮瘮?shù)滿(mǎn)足,則不等式的解集為
(結(jié)果用區(qū)間表示)
三、解答題(
4、共6小題,其中17題10分,其余小題,每題12分,共70分)
17.已知命題p:,不等式恒成立;:方程表示焦點(diǎn)在軸上的橢圓.
(1)若為假命題,求實(shí)數(shù)的取值范圍;
(2)若為真命題,為假命題,求實(shí)數(shù)的取值范圍.
.
18.已知函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)設(shè)不等式的解集為,若,,求的取值范圍.
19. 在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;
(2)若直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),且設(shè)定點(diǎn),求的值.
20. 已知函數(shù).
(1)求
5、曲線(xiàn)在點(diǎn)處的切線(xiàn)與軸和軸圍成的三角形面積;
(2)若過(guò)點(diǎn)可作三條不同直線(xiàn)與曲線(xiàn)相切,求實(shí)數(shù)的取值范圍
21.已知圓的方程為,點(diǎn),點(diǎn)M為圓上的任意一點(diǎn),線(xiàn)段的垂直平分線(xiàn)與線(xiàn)段相交于點(diǎn)N.
(1)求點(diǎn)N的軌跡C的方程.
(2)已知點(diǎn),過(guò)點(diǎn)A且斜率為k的直線(xiàn)交軌跡C于兩點(diǎn),以為鄰邊作平
行四邊形,是否存在常數(shù)k,使得點(diǎn)B在軌跡C上,若存在,求k的值;若不存在,說(shuō)明
理由.
22. 已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若在上恒成立,求整數(shù)的最大值.
玉山一中xx~xx第二學(xué)期高二期中考試
文科數(shù)學(xué)試卷答案(7--9班)
一、 選擇
6、題(每小題5分,共60分)
BACBD ACDAA BC
二、 填空題(每小題5分,共20分)
13. 14. 15. 或 16.
三、 解答題(17題10分,其余各題均為12分)
17.解:(1)若為假命題,則為真命題.若命題真,即對(duì)恒成立,則,所以……………………………………………………………..4分
(2)命題:方程表示焦點(diǎn)在軸上的橢圓,或.
為真命題,且為假命題,、一真一假……………………………………6分
①如果真假,則有,得;
②如果假真,則有,得.
綜上實(shí)數(shù)的取值范
7、圍為或.……………………………………..10分
18.解:(1)時(shí),,
若,時(shí),,解得:,故;
當(dāng)時(shí),,解得:,故,
時(shí),,解得:,故,
綜上,不等式的解集是,;………………………………………………………….6分
(2)若,,則問(wèn)題轉(zhuǎn)化為在,恒成立,
即,故,…………………………8分
故在,恒成立,即在,恒成立,
故,即的范圍是,.……………………………………………………12分
19解:(1)由消去得,……………………………………3分
由得,即,故直線(xiàn)的普通方程為;曲線(xiàn)的直角坐標(biāo)方程為:.…………………………………6分
(2) 因?yàn)橹本€(xiàn)過(guò),所以可設(shè)直線(xiàn)的參數(shù)
8、方程為并代入圓的方程整理得:,………………………………………….8分
設(shè),對(duì)應(yīng)的參數(shù)為,,則,,且……..10分
………………………………12分
20..解:(1)函數(shù)的導(dǎo)數(shù)為,曲線(xiàn)在點(diǎn)處的切線(xiàn)斜率為1,可得切線(xiàn)方程為即,………………………………2分
切線(xiàn)與軸和軸的交點(diǎn)為,,,可得切線(xiàn)與軸和軸圍成的三角形面積
為;………………………………6分
(2),則,設(shè)切點(diǎn)為,則.
可得過(guò)切點(diǎn)處的切線(xiàn)方程為,把點(diǎn)代入得,整理得,
若過(guò)點(diǎn)可作三條直線(xiàn)與曲線(xiàn)相切,則方程有三個(gè)
不同根.………………………………8分
令,則,
當(dāng),,時(shí),;當(dāng)時(shí),,
則的單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為.
可
9、得當(dāng)時(shí),有極大值為;當(dāng)時(shí),有極小值為(2).
由,得.則實(shí)數(shù)的取值范圍是,.…………………12分
21.(1)∵
知點(diǎn)N的軌跡是以C1、C2為焦點(diǎn)的橢圓
軌跡C:=1…………………………………….4分
(2)
消去y,得
∴存在常數(shù),使得□OPBQ的頂點(diǎn)B在橢圓上………12分
22解:(1)的定義域是,,,……………1分
,令,則,
當(dāng)時(shí),,遞減,當(dāng)時(shí),,遞增,
(1),,遞減…………………….5分
綜上,在,遞減;………………………….6分
(3) 若恒成立,即令恒成立,即的最小值大于,………………………….7分
,,
令,則,故在遞增,
又(3),(4),存在唯一的實(shí)數(shù)根,且滿(mǎn)足,,……………………………..9分
故當(dāng)時(shí),,,遞減,當(dāng)時(shí),,,遞增,故(a),
故正整數(shù)的最大值是3.………………..12分