甘肅省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 圖形初步與三角形單元檢測(cè)(四)圖形初步與三角形練習(xí)
《甘肅省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 圖形初步與三角形單元檢測(cè)(四)圖形初步與三角形練習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《甘肅省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 圖形初步與三角形單元檢測(cè)(四)圖形初步與三角形練習(xí)(11頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、甘肅省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 圖形初步與三角形單元檢測(cè)(四)圖形初步與三角形練習(xí) 一、選擇題(本大題共10小題,每小題3分,共30分) 1.如圖,三角板的直角頂點(diǎn)落在矩形紙片的一邊上.若∠1=35°,則∠2的度數(shù)是 ( ) A.35° B.45° C.55° D.65° 答案C 解析∵∠1+∠3=90°,∠1=35°, ∴∠3=55°, ∴∠2=∠3=55°. 2.已知下列命題:①若>1,則a>b;②若a+b=0,則|a|=|b|;③等邊三角形的三個(gè)內(nèi)角都相等;④底角相等的兩個(gè)等腰三角形全等.其中原命題與逆命題均為真
2、命題的個(gè)數(shù)是( ) A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 答案A 解析∵當(dāng)b<0時(shí),如果>1,那么a
3、sin 55°米 C.100tan 35°米 D.100tan 55°米 答案C 解析∵PA⊥PB,PC=100米,∠PCA=35°, ∴小河寬PA=PCtan∠PCA=100tan 35°米. 4.在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C'的坐標(biāo)為( ) A.,0 B.(2,0) C.,0 D.(3,0) 答案C 解析過點(diǎn)B作BD⊥x軸于點(diǎn)D, ∵∠ACO+∠BCD
4、=90°,∠OAC+ACO=90°, ∴∠OAC=∠BCD, 在△ACO與△BCD中, ∴△ACO≌△CBD(AAS),∴OC=BD,OA=CD, ∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1), ∴設(shè)反比例函數(shù)的解析式為y=, 將B(3,1)代入y=,得k=3,∴y=,∴把y=2代入y=,得x=, 當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí),此時(shí)點(diǎn)A移動(dòng)了個(gè)單位長(zhǎng)度, ∴C也移動(dòng)了個(gè)單位長(zhǎng)度,此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C'的坐標(biāo)為,0. 5. 如圖,在Rt△ABC中,∠ACB=90°,CD為AB邊上的高,CE為AB邊上的中線,AD=2,CE=5,則CD=( )
5、A.2 B.3 C.4 D.2 答案C 解析在Rt△ABC中,∠ACB=90°,CE為AB邊上的中線,∴CE=AE=5, 又∵AD=2,∴DE=AE-AD=5-2=3, ∵CD為AB邊上的高,∴∠CDE=90°, ∴△CDE為直角三角形 ∴CD==4. 6. (xx湖南婁底)如圖,由四個(gè)全等的直角三角形圍成的大正方形的面積是169,小正方形的面積為49,則sin α-cos α=( ) A. B.- C. D.- 答案D 解析∵小正方形面積為49,大正方形面積為169, ∴小正方形的邊長(zhǎng)是7,大正方形的邊長(zhǎng)是13,在Rt△ABC中,AC2+BC2=AB2,即AC2
6、+(7+AC)2=132, 整理得AC2+7AC-60=0,解得AC=5,AC=-12(舍去), ∴BC==12, ∴sin α=,cos α=, ∴sin α-cos α==-. 7. (xx陜西)在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足為D,∠ABC的平分線交AD于點(diǎn)E,則AE的長(zhǎng)為( ) A. B.2 C. D.3 答案C 解析∵AD⊥BC,∴△ADC是直角三角形, ∵∠C=45°,∴∠DAC=45°,∴AD=DC, ∵AC=8,∴AD=4,在Rt△ABD中,∠B=60°,∴BD=, ∵BE平分∠ABC,∴∠EBD=30°,
7、 ∴DE=BD·tan 30°=, ∴AE=AD-DE=4. 8.(xx湖北黃岡)如圖,在△ABC中,DE是AC的垂直平分線,且分別交BC,AC于點(diǎn)D和E,∠B=60°,∠C=25°,則∠BAD為( ) A.50° B.70° C.75° D.80° 答案B 解析由三角形的內(nèi)角和定理,得∠BAC=180°-∠B-∠C=180°-60°-25°=95°. 又由垂直平分線的性質(zhì),知∠C=∠DAC=25°,∴∠BAC=∠BAD+∠DAC=∠BAD+∠C=∠BAD+25°=95° ∴∠BAD=95°-25°=70°. 9.如圖,△ABC的面積是12,點(diǎn)D,E,F,G分別是BC
8、,AD,BE,CE的中點(diǎn),則△AFG的面積是( ) A.4.5 B.5 C.5.5 D.6 答案A 解析∵點(diǎn)D,E,F,G分別是BC,AD,BE,CE的中點(diǎn),∴AD是△ABC的中線,BE是△ABD的中線,CF是△ACD的中線,AF是△ABE的中線,AG是△ACE的中線, ∴△AEF的面積=×△ABE的面積=×△ABD的面積=×△ABC的面積=, 同理可得△AEG的面積=, △BCE的面積=×△ABC的面積=6, 又∵FG是△BCE的中位線,∴△EFG的面積=×△BCE的面積=, ∴△AFG的面積是×3==4.5. 10. (xx江蘇南通)如圖,等邊△ABC的邊長(zhǎng)為3
9、cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1 cm的速度,沿A→B→C的方向運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為x(s),y=PC2,則y關(guān)于x的函數(shù)的圖象大致為 ( ) 答案C 解析∵正△ABC的邊長(zhǎng)為3 cm, ∴∠A=∠B=∠C=60°,AC=3 cm. ①當(dāng)0≤x≤3時(shí),即點(diǎn)P在線段AB上時(shí),AP=x cm(0≤x≤3); 解法一:根據(jù)余弦定理知cos A=,即, 解得y=x2-3x+9(0≤x≤3);該函數(shù)圖象是開口向上的拋物線; 解法二:過C作CD⊥AB,則AD=1.5 cm,CD= cm, 點(diǎn)P在AB上時(shí),AP=x cm,PD=|1.5-x| cm,∴y=PC2=2+(1
10、.5-x)2=x2-3x+9(0≤x≤3),
該函數(shù)圖象是開口向上的拋物線;
②當(dāng)3 11、110°,∠2=100°,則∠3= .?
答案150°
解析如圖,
∵m∥n,∠1=110°,∴∠4=70°,
∵∠2=100°,∴∠5=80°,
∴∠6=180°-∠4-∠5=30°,
∴∠3=180°-∠6=150°.
13.三角形三邊長(zhǎng)分別為3,4,5,那么最長(zhǎng)邊上的中線長(zhǎng)等于 .?
答案2.5
解析∵32+42=25=52,∴該三角形是直角三角形,∴×5=2.5.
14.(xx湖南湘潭)《九章算術(shù)》是我國古代最重要的數(shù)學(xué)著作之一,在“勾股”章中記載了一道“折竹抵地”問題:“今有竹高一丈,末折抵地,去本三尺,問折者高幾何?”翻譯成數(shù)學(xué)問題是 12、:如圖所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的長(zhǎng),如果設(shè)AC=x,則可列方程為 .?
答案x2+32=(10-x)2
解析設(shè)AC=x,∵AC+AB=10,∴AB=10-x.
∵在Rt△ABC中,∠ACB=90°,
∴AC2+BC2=AB2,即x2+32=(10-x)2.
15.一個(gè)三角形的兩邊長(zhǎng)分別為3和6,第三邊長(zhǎng)是方程x2-10x+21=0的根,則三角形的周長(zhǎng)為 .?
答案16
解析x2-10x+21=0,因式分解得(x-3)(x-7)=0,解得x1=3,x2=7,
∵三角形的第三邊是x2-10x+21=0的根,
∴三角形的 13、第三邊為3或7,
當(dāng)三角形第三邊為3時(shí),3+3=6,不能構(gòu)成三角形,舍去;
當(dāng)三角形第三邊為7時(shí),三角形三邊分別為3,6,7,能構(gòu)成三角形,
則第三邊的長(zhǎng)為7.
∴三角形的周長(zhǎng)為:3+6+7=16.
16.
(xx湖南婁底)如圖,△ABC中,AB=AC,AD⊥BC于D點(diǎn),DE⊥AB于點(diǎn)E,BF⊥AC于點(diǎn)F,DE=3 cm,則BF= cm.?
答案6
解析在Rt△ADB與Rt△ADC中,
,∴Rt△ADB≌Rt△ADC(HL).
∴S△ABC=2S△ABD=2×AB·DE=AB·DE=3AB,
∵S△ABC=AC·BF,∴AC·BF=3AB,
∵AC=AB,∴ 14、BF=3,∴BF=6.
17.(xx四川達(dá)州)如圖,△ABC的周長(zhǎng)為19,點(diǎn)D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為N,∠ACB的平分線垂直于AD,垂足為M,若BC=7,則MN的長(zhǎng)度為 .?
答案
解析∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,
在△BNA和△BNE中,
∴△BNA≌△BNE(ASA),∴BA=BE,
∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴點(diǎn)N是AE中點(diǎn),點(diǎn)M是AD中點(diǎn)(三線合一),∴MN是△ADE的中位線,
∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5 15、,
∴MN=DE=.
18.(xx廣東)如圖,已知等邊△OA1B1,頂點(diǎn)A1在雙曲線y=(x>0)上,點(diǎn)B1的坐標(biāo)為(2,0).過B1作B1A2∥OA1交雙曲線于點(diǎn)A2,過A2作A2B2∥A1B1交x軸于點(diǎn)B2,得到第二個(gè)等邊△B1A2B2;過B2作B2A3∥B1A2交雙曲線于點(diǎn)A3,過A3作A3B3∥A2B2交x軸于點(diǎn)B3,得到第三個(gè)等邊△B2A3B3;以此類推,…,則點(diǎn)B6的坐標(biāo)為 .?
答案(2,0)
解析如圖,作A2C⊥x軸于點(diǎn)C,設(shè)B1C=a,則A2C=a,
OC=OB1+B1C=2+a,A2(2+a,a).
∵點(diǎn)A2在雙曲線y=(x>0)上,
∴(2+ 16、a)·a=,
解得a=-1,或a=--1(舍去),
∴OB2=OB1+2B1C=2+2-2=2,
∴點(diǎn)B2的坐標(biāo)為(2,0);
作A3D⊥x軸于點(diǎn)D,設(shè)B2D=b,則A3D=b,
OD=OB2+B2D=2+b,A2(2+b,b).
∵點(diǎn)A3在雙曲線y=(x>0)上,
∴(2+b)·b=,
解得b=-,或b=-(舍去),
∴OB3=OB2+2B2D=2-2+2=2,
∴點(diǎn)B3的坐標(biāo)為(2,0);
同理可得點(diǎn)B4的坐標(biāo)為(2,0)即(4,0);…,
∴點(diǎn)Bn的坐標(biāo)為(2,0),
∴點(diǎn)B6的坐標(biāo)為(2,0).
三、解答題(本大題共6小題,共58分)
19.(8分)( 17、xx貴州銅仁)已知:如圖,點(diǎn)A,D,C,B在同一條直線上,AD=BC,AE=BF,CE=DF,求證:AE∥BF.
證明∵AD=BC,∴AC=BD,
在△ACE和△BDF中,
∴△ACE≌△BDF(SSS),
∴∠A=∠B,∴AE∥BF.
20.(8分)(xx浙江杭州)閱讀下列題目的解題過程:
已知a,b,c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解 ∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2)(B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出 18、現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào): ;?
(2)錯(cuò)誤的原因?yàn)? ;?
(3)本題正確的結(jié)論為: .?
解(1)由題目中的解答步驟可得,
錯(cuò)誤步驟的代號(hào)為:C;
(2)錯(cuò)誤的原因?yàn)?沒有考慮a=b的情況,
(3)本題正確的結(jié)論為:△ABC是等腰三角形或直角三角形.
21.(10分)如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點(diǎn).
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長(zhǎng).
(1)證明∵AD⊥BC,∴∠ADB=∠ADC=90°,
在△BDG和△ADC中,
19、∴△BDG≌△ADC(SAS),
∴BG=AC,∠BGD=∠C,
∵∠ADB=∠ADC=90°,E,F分別是BG,AC的中點(diǎn),∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;
(2)解∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.
22.(10分)(xx湖南張家界)2017年9月8日—10日,第六屆翼裝飛行世界錦標(biāo)賽在我市天門山風(fēng)景區(qū)隆重舉行,來自全球11個(gè)國家的16名選手參加了激烈的角逐.如圖,某選手從離水平地面1 000米高的A點(diǎn)出發(fā)(AB=1 000米),沿俯角為30°的方向直線飛 20、行1 400米到達(dá)D點(diǎn),然后打開降落傘沿俯角為60°的方向降落到地面上的C點(diǎn),求該選手飛行的水平距離BC.
解過點(diǎn)D作DE⊥AB于E,DF⊥BC于點(diǎn)F,
由題意知∠ADE=30°,∠CDF=30°,在Rt△DAE中.
AE=AD=×1 400=700,
cos∠ADE=,
DE=1 400×=700
EB=AB-AE=1 000-700=300
DF=BE=300
tan∠CDF=
FC=300×=100
∴BC=BF+FC=DE+FC=700+100=800(米).
23.(10分)在△ABC中,∠A=30°,點(diǎn)P從點(diǎn)A出發(fā)以2 cm/s的速度沿折線A-C-B運(yùn) 21、動(dòng),點(diǎn)Q從點(diǎn)A出發(fā)以a(cm/s)的速度沿AB運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)某一點(diǎn)運(yùn)動(dòng)到點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x(s),△APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1,C2兩段組成,如圖2所示.
(1)求a的值;
(2)求圖2中圖象C2段的函數(shù)表達(dá)式;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段BC上某一段時(shí)△APQ的面積,大于當(dāng)點(diǎn)P在線段AC上任意一點(diǎn)時(shí)△APQ的面積,求x的取值范圍.
解(1)如圖,作PD⊥AB于D,
∵∠A=30°,∴PD=AP=x,
由題圖2可知,當(dāng)x=1時(shí),y=,
∴×a×1=,∴a=1.
(2)如圖,作PD⊥AB于D,
由圖象可知,P 22、B=5×2-2x=10-2x,PD=PB·sin B=(10-2x)·sin B,
∴y=×AQ×PD=x×(10-2x)·sin B,
∵當(dāng)x=4時(shí),y=,∴×4×(10-2×4)·sin B=,解得sin B=,
∴y=x×(10-2x)×=-x2+x;
(3)x2=-x2+x,
解得x1=0,x2=2,
由圖象可知,當(dāng)x=2時(shí),y=x2有最大值,最大值是×22=2,
-x2+x=2,
解得,x1=3,x2=2,
∴當(dāng)2 23、線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=-1,且拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),其中A(1,0),C(0,3).
(1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸x=-1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=-1上的一個(gè)動(dòng)點(diǎn),求使△PBC為直角三角形的點(diǎn)的坐標(biāo).
解(1)依題意得解之得
∴拋物線的解析式:y=-x2-2x+3.
∵對(duì)稱軸為x=-1,且拋物線經(jīng)過A(1,0),
∴把B(-3,0),C(0,3)分別代入直線y=mx+n,得,解之得,
24、
∴直線y=mx+n的解析式為y=x+3.
(2)直線BC與對(duì)稱軸x=-1的交點(diǎn)為M,則此時(shí)MA+MC的值最小,把x=-1代入直線y=x+3得y=2,
∴M(-1,2).即當(dāng)點(diǎn)M到點(diǎn)的距離與到點(diǎn)的距離之和最小時(shí)M的坐標(biāo)為(-1,2).
(注:本題只求M坐標(biāo)沒說要證明為何此時(shí)MA+MC的值最小,所以答案沒證明MA+MC的值最小的原因).
(3)設(shè)P(-1,t),又B(-3,0),C(0,3),
∴BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,
①若點(diǎn)B為直角頂點(diǎn),則BC2+PB2=PC2即:18+4+t2=t2-6t+10解之得t=-2,
②若點(diǎn)C為直角頂點(diǎn),則BC2+PC2=PB2即:18+t2-6t+10=4+t2解之得t=4,
③若點(diǎn)P為直角頂點(diǎn),則PB2+PC2=BC2即:4+t2+t2-6t+10=18解之得
t1=,t2=.
綜上所述的坐標(biāo)為(-1,-2)或(-1,4)或-1,或-1,.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- U9__My_favorite_subject_is_science第一課時(shí)
- (人教新課標(biāo))四年級(jí)語文上冊(cè)課件貓4
- 第五章項(xiàng)目執(zhí)行與控制(研)
- 驚弓之鳥 (5)(教育精品)
- 7-抗紫外線纖維及紡織品-產(chǎn)業(yè)用功能纖維及紡織品-教學(xué)課件
- 3.1改革迫在眉睫(人教版)
- 《小數(shù)乘整數(shù)》[1]
- 梅蘭芳學(xué)藝第一課時(shí)
- 《XX的自述》
- 自動(dòng)控制原理-第六章
- 《議論文閱讀-技巧指導(dǎo)、知識(shí)點(diǎn)歸納、小結(jié)、訓(xùn)練》課件
- 線性系統(tǒng)的數(shù)學(xué)描述
- 等比數(shù)列前n項(xiàng)和的求和公式ppt
- 模擬電子簡(jiǎn)明教程 第講
- 01在山的那邊1