影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高三數(shù)學(xué) 知識(shí)點(diǎn)精析精練21 直線與平面

上傳人:xt****7 文檔編號(hào):105738378 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):15 大?。?50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高三數(shù)學(xué) 知識(shí)點(diǎn)精析精練21 直線與平面_第1頁
第1頁 / 共15頁
2022年高三數(shù)學(xué) 知識(shí)點(diǎn)精析精練21 直線與平面_第2頁
第2頁 / 共15頁
2022年高三數(shù)學(xué) 知識(shí)點(diǎn)精析精練21 直線與平面_第3頁
第3頁 / 共15頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué) 知識(shí)點(diǎn)精析精練21 直線與平面》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué) 知識(shí)點(diǎn)精析精練21 直線與平面(15頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué) 知識(shí)點(diǎn)精析精練21 直線與平面 【復(fù)習(xí)要點(diǎn)】 【例題】 【例1】 正三棱錐P-ABC的高和底面邊長都等于a,EF是PA與BC的公垂線,E、F分別是垂足。(1)求證:側(cè)棱PA^截面BEC (2)求截面BEC的面積;(3)求截面BEC與底面ABC所成二面角的大小 解:1)略 2)易知F為BC的中點(diǎn),在RtΔPAO中,AO=,PO=a, 所以PA=,又易知PA⊥BE, 在等腰三角形PAB中,可求得BE=, 所以在直角三角形EFB中,求得EF=,所以 3)∠EFA=300 【例2】 已知斜三棱柱ABC—A1B1C1中,A1C1=B1C1=2,D、D1分

2、別是AB、A1B1的中點(diǎn),平面A1ABB1⊥平面A1B1C1,異面直線AB1和C1B互相垂直. (1)求證:AB1⊥C1D1; (2)求證:AB1⊥面A1CD; (3)若AB1=3,求直線AC與平面A1CD所成的角. 解:(1)證明:∵A1C1=B1C1,D1是A1B1的中點(diǎn),∴C1D1⊥A1B1于D1, 又∵平面A1ABB1⊥平面A1B1C1,∴C1D1⊥平面A1B1BA, 而AB1平面A1ABB1,∴AB1⊥C1D1. (2)證明:連結(jié)D1D,∵D是AB中點(diǎn),∴DD1CC1,∴C1D1∥CD,由(1)得CD⊥AB1,又∵C1D1⊥平面A1ABB1,C1B⊥AB1,由三垂線

3、定理得BD1⊥AB1, 又∵A1D∥D1B,∴AB1⊥A1D而CD∩A1D=D,∴AB1⊥平面A1CD. (3)解:由(2)AB1⊥平面A1CD于O,連結(jié)CO1得∠ACO為直線AC與平面A1CD所成的角,∵AB1=3,AC=A1C1=2,∴AO=1,∴sinOCA=, ∴∠OCA=. 【例3】 兩個(gè)全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求證:MN∥平面BCE. 證法一:作MP⊥BC,NQ⊥BE,P、Q為垂足,則MP∥AB,NQ∥AB. ∴MP∥NQ,又AM=NF,AC=BF, ∴MC=NB,∠MCP=∠NBQ=45° ∴Rt△M

4、CP≌Rt△NBQ ∴MP=NQ,故四邊形MPQN為平行四邊形 ∴MN∥PQ ∵PQ平面BCE,MN在平面BCE外, ∴MN∥平面BCE. 證法二:如圖過M作MH⊥AB于H,則MH∥BC, ∴ 連結(jié)NH,由BF=AC,F(xiàn)N=AM,得 , 由 ∴MN∥平面BCE. 【例4】 在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC. (1)若D是BC的中點(diǎn),求證:AD⊥CC1; (2)過側(cè)面BB1C1C的對(duì)角線BC1的平面交側(cè)棱于M,若AM=MA1,求證:截面MBC1⊥側(cè)面BB1C1C; (3)AM=MA1是截面

5、MBC1⊥平面BB1C1C的充要條件嗎?請(qǐng)你敘述判斷理由. 解: (1)證明:∵AB=AC,D是BC的中點(diǎn),∴AD⊥BC ∵底面ABC⊥平面BB1C1C,∴AD⊥側(cè)面BB1C1C ∴AD⊥CC1. (2)證明:延長B1A1與BM交于N,連結(jié)C1N ∵AM=MA1,∴NA1=A1B1 ∵A1B1=A1C1,∴A1C1=A1N=A1B1 ∴C1N⊥C1B1 ∵底面NB1C1⊥側(cè)面BB1C1C,∴C1N⊥側(cè)面BB1C1C ∴截面C1NB⊥側(cè)面BB1C1C ∴截面MBC1⊥側(cè)面BB1C1C. (3)解:結(jié)論是肯定的,充分性已由(2)證明,下面證必要性. 過M作ME⊥BC1于E,

6、∵截面MBC1⊥側(cè)面BB1C1C ∴ME⊥側(cè)面BB1C1C,又∵AD⊥側(cè)面BB1C1C. ∴ME∥AD,∴M、E、D、A共面 ∵AM∥側(cè)面BB1C1C,∴AM∥DE ∵CC1⊥AM,∴DE∥CC1 ∵D是BC的中點(diǎn),∴E是BC1的中點(diǎn) ∴AM=DE=AA1,∴AM=MA1. 【例5】 已知斜三棱柱ABC-A’B’C’的底面是直角三角形,∠C=90°,側(cè)棱與底面所成的角為α(0°<α<90°),B’在底面上的射影D落在BC上。 (1)求證:AC⊥面BB’C’C。 (2)當(dāng)α為何值時(shí),AB’⊥BC’,且使得D恰為BC的中點(diǎn)。 解:(1)∵ B’D⊥面ABC,AC面ABC

7、, ∴ B’D⊥AC, 又AC⊥BC,BC∩B’D=D, ∴ AC⊥面BB’C’C。 (2)由三垂線定理知道:要使AB’⊥BC’,需且只需AB’在面BB’C’C內(nèi)的射影B’C⊥BC’。即四邊形BB’C’C為菱形。此時(shí),BC=BB’。 因?yàn)锽’D⊥面ABC,所以,就是側(cè)棱B’B與底面ABC所成的角。 由D恰好落在BC上,且為BC的中點(diǎn),所以,此時(shí)=。 即當(dāng)α=時(shí),AB’⊥BC’,且使得D恰為BC的中點(diǎn)。 【例6】 如圖:已知四棱錐中,底面四邊形為正方形,側(cè)面PDC為正三角形,且平面PDC⊥底面ABCD,E為PC中點(diǎn)。 (1)求證:平面EDB⊥平面PBC; (2

8、)求二面角的平面角的正切值。 解:(1)要證兩個(gè)平面互相垂直,常規(guī)的想法是:證明其中一個(gè)平面過另一個(gè)平面的一條垂線。 首先觀察圖中已有的直線,不難發(fā)現(xiàn),由于側(cè)面PDC為正三角形,所以,,那么我們自然想到:是否有?這樣的想法一經(jīng)產(chǎn)生,證明它并不是一件困難的事情。 ∵ 面PDC⊥底面ABCD,交線為DC, ∴ DE在平面ABCD內(nèi)的射影就是DC。 在正方形ABCD中,DC⊥CB, ∴ DE⊥CB。 又,, ∴ DE⊥。 又面EDB, ∴ 平面EDB⊥平面PBC。 (2)由(1)的證明可知:DE⊥。所以,就是二面角的平面角。 ∵ 面PDC⊥底面ABCD,交線為D

9、C, 又平面ABCD內(nèi)的直線CB⊥ DC。 ∴ CB⊥面PDC。 又面PDC, ∴ CB⊥PC。 在Rt中,。 【例7】 如圖:在四棱錐中,⊥平面,∠,,,為的中點(diǎn)。 (1)求證:平面; (2)當(dāng)點(diǎn)到平面的距離為多少時(shí),平面與平面所成的二面角為? 解:題目中涉及到平面與平面所成的二面角,所以,應(yīng)作出這兩個(gè)平面的交線(即二面角的棱)。另一方面,要證平面,應(yīng)該設(shè)法證明CE平行于面內(nèi)的一條直線,充分利用中點(diǎn)(中位線)的性質(zhì),不難發(fā)現(xiàn),剛剛做出的二面角的棱正好符合要求。 (1)延長BC、AD交于點(diǎn)F。 在中,∠,所以,AB、CD都與AF垂直,所以,CD//AB,

10、所以,∽。又,,所以,點(diǎn)D、C分別為線段AF、BF的中點(diǎn)。 又因?yàn)闉榈闹悬c(diǎn),所以,EC為的中位線,所以,EC//SF。 又,,所以,平面。 (2)因?yàn)椋骸推矫?,AB平面,所以,AB。又ABAF,,所以,AB面。 過A作AHSF于H,連BH,則BHSF,所以,就是平面與平面所成的二面角的平面角。 在Rt中,要使=,需且只需AH=AB=。 此時(shí),在SAF中,,所以,。 在三棱錐S-ACD中,設(shè)點(diǎn)A到面SCD的距離為h,則 h= 因?yàn)锳B//DC,所以,AB//面SCD。所以,點(diǎn)A、B到面SCD的距離相等。又因?yàn)镋為SB中點(diǎn),所以,點(diǎn)E到平面SCD的距離就等于點(diǎn)B到面

11、SCD距離的一半,即。 【例8】 如圖,在三棱柱中,四邊形是菱形,四邊形是矩形,。(1)求證:平面; (2)若, 求AC'與平面BCC'所成角的大?。ㄓ梅慈呛瘮?shù)表示) 解:(1)證明: ∵在三棱柱中, ∴CB⊥AB;又∵CB⊥; ∴ (2)解:由 過點(diǎn)A作AH⊥平面,H為垂足, 則H在上, 連結(jié) 連接 可知 因此,直線與平面所成的角是。 【例9】 在長方體中,AB=a,,;,由頂點(diǎn)A沿著長方體的表面到頂點(diǎn)的最短距離是多少? 解:如圖所示 【直線與平面練習(xí)】 一、選擇題 1.在長方體ABCD—A1B1C1D1中,底面是邊長為2的正方形

12、,高為4,則點(diǎn)A1到截面AB1D1的距離是( ) A. B. C. D. 2.在直二面角α—l—β中,直線aα,直線bβ,a、b與l斜交,則( ) A.a不和b垂直,但可能a∥b B.a可能和b垂直,也可能a∥b C.a不和b垂直,a也不和b平行 D.a不和b平行,但可能a⊥b 二、填空題 3.設(shè)X、Y、Z是空間不同的直線或平面,對(duì)下面四種情形,使“X⊥Z且Y⊥ZX∥Y”為真命題的是_________(填序號(hào)). ①X、Y、Z是直線 ②X、Y是直線,Z是平面 ③Z是直線,X、Y是平面 ④X、Y、Z是平面 4.設(shè)a,b是異面直線,

13、下列命題正確的是_________. ①過不在a、b上的一點(diǎn)P一定可以作一條直線和a、b都相交 ②過不在a、b上的一點(diǎn)P一定可以作一個(gè)平面和a、b都垂直 ③過a一定可以作一個(gè)平面與b垂直 ④過a一定可以作一個(gè)平面與b平行 三、解答題 5.如圖,在四棱錐P—ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,E、F分別是AB、PC的中點(diǎn). (1)求證:CD⊥PD; (2)求證:EF∥平面PAD; (3)當(dāng)平面PCD與平面ABCD成多大角時(shí),直線EF⊥平面PCD? 6.如圖,在正三棱錐A—BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分別交AB、BD、

14、DC、CA于點(diǎn)E、F、G、H. (1)判定四邊形EFGH的形狀,并說明理由. (2)設(shè)P是棱AD上的點(diǎn),當(dāng)AP為何值時(shí),平面PBC⊥平面EFGH,請(qǐng)給出證明. 7.如圖,正三棱柱ABC—A1B1C1的各棱長都相等,D、E分別是CC1和AB1的中點(diǎn),點(diǎn)F在BC上且滿足BF∶FC=1∶3. (1)若M為AB中點(diǎn),求證:BB1∥平面EFM; (2)求證:EF⊥BC; (3)求二面角A1—B1D—C1的大小. 8.如圖,已知平行六面體ABCD—A1B1C1D1的底面是菱形且∠C1CB= ∠C1CD=∠BCD=60°, (1)證明:C1C⊥BD; (2)假定CD=2,CC1

15、=,記面C1BD為α,面CBD為β,求二面角α—BD—β的平面角的余弦值; (3)當(dāng)?shù)闹禐槎嗌贂r(shí),可使A1C⊥面C1BD? 參考答案 一、1.解析:如圖,設(shè)A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥AB1D1,交線為AO1,在面AA1O1內(nèi)過A1作A1H⊥AO1于H,則易知A1H長即是點(diǎn)A1到平面AB1D1的距離,在Rt△A1O1A中,A1O1=,AO1=3,由A1O1·A1A=h·AO1,可得A1H=. 答案:C 2.解析:如圖,在l上任取一點(diǎn)P,過P分別在α、β內(nèi)作a′∥a,b′∥b,在a′上任取一點(diǎn)

16、A,過A作AC⊥l,垂足為C,則AC⊥β,過C作CB⊥b′交b′于B,連AB,由三垂線定理知AB⊥b′, ∴△APB為直角三角形,故∠APB為銳角. 答案:C 二、3.解析:①是假命題,直線X、Y、Z位于正方體的三條共點(diǎn)棱時(shí)為反例,②③是真命題,④是假命題,平面X、Y、Z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí)為反例. 答案:②③ 4.④ 三、5.證明:(1)∵PA⊥底面ABCD,∴AD是PD在平面ABCD內(nèi)的射影, ∵CD平面ABCD且CD⊥AD,∴CD⊥PD. (2)取CD中點(diǎn)G,連EG、FG, ∵E、F分別是AB、PC的中點(diǎn),∴EG∥AD,F(xiàn)G∥PD ∴平面EFG∥平面PAD,

17、故EF∥平面PAD (3)解:當(dāng)平面PCD與平面ABCD成45°角時(shí),直線EF⊥面PCD 證明:G為CD中點(diǎn),則EG⊥CD,由(1)知FG⊥CD,故∠EGF為平面PCD與平面ABCD所成二面角的平面角.即∠EGF=45°,從而得∠ADP=45°,AD=AP 由Rt△PAE≌Rt△CBE,得PE=CE 又F是PC的中點(diǎn),∴EF⊥PC,由CD⊥EG,CD⊥FG,得CD⊥平面EFG,CD⊥EF即EF⊥CD,故EF⊥平面PCD. 6.(1)證明: 同理EF∥FG,∴EFGH是平行四邊形 ∵A—BCD是正三棱錐,∴A在底面上的射影O是△BCD的中心, ∴DO⊥BC,∴AD⊥BC,

18、∴HG⊥EH,四邊形EFGH是矩形. (2)作CP⊥AD于P點(diǎn),連結(jié)BP,∵AD⊥BC,∴AD⊥面BCP ∵HG∥AD,∴HG⊥面BCP,HG面EFGH.面BCP⊥面EFGH, 在Rt△APC中,∠CAP=30°,AC=a,∴AP=a. 7.(1)證明:連結(jié)EM、MF,∵M(jìn)、E分別是正三棱柱的棱AB和AB1的中點(diǎn), ∴BB1∥ME,又BB1平面EFM,∴BB1∥平面EFM. (2)證明:取BC的中點(diǎn)N,連結(jié)AN由正三棱柱得:AN⊥BC, 又BF∶FC=1∶3,∴F是BN的中點(diǎn),故MF∥AN, ∴MF⊥BC,而BC⊥BB1,BB1∥ME. ∴ME⊥BC,由于MF∩ME=M,∴B

19、C⊥平面EFM, 又EF平面EFM,∴BC⊥EF. (3)解:取B1C1的中點(diǎn)O,連結(jié)A1O知,A1O⊥面BCC1B1,由點(diǎn)O作B1D的垂線OQ,垂足為Q,連結(jié)A1Q,由三垂線定理,A1Q⊥B1D,故∠A1QD為二面角A1—B1D—C的平面角,易得∠A1QO=arctan. 8.(1)證明:連結(jié)A1C1、AC,AC和BD交于點(diǎn)O,連結(jié)C1O, ∵四邊形ABCD是菱形,∴AC⊥BD,BC=CD 又∵∠BCC1=∠DCC1,C1C是公共邊,∴△C1BC≌△C1DC,∴C1B=C1D ∵DO=OB,∴C1O⊥BD,但AC⊥BD,AC∩C1O=O ∴BD⊥平面AC1,又C1C平面AC1

20、,∴C1C⊥BD. (2)解:由(1)知AC⊥BD,C1O⊥BD,∴∠C1OC是二面角α—BD—β的平面角. 在△C1BC中,BC=2,C1C=,∠BCC1=60°,∴C1B2=22+()2-2×2××cos60°=. ∵∠OCB=30°,∴OB=,BC=1,C1O=,即C1O=C1C. 作C1H⊥OC,垂足為H,則H是OC中點(diǎn)且OH=,∴cosC1OC= (3)解:由(1)知BD⊥平面AC1,∵A1O平面AC1,∴BD⊥A1C,當(dāng)=1時(shí),平行六面體的六個(gè)面是全等的菱形,同理可證BC1⊥A1C,又∵BD∩BC1=B,∴A1C⊥平面C1BD. 【練習(xí)2】 1.下列命題中,

21、正確的是( ) A.如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直 B.如果一個(gè)平面內(nèi)兩條直線都平行于另一平面,那么這兩個(gè)平面平行。 C.如果兩條直線都平行于同一平面,那么這兩條直線平行 D.如果一條直線上有兩個(gè)點(diǎn)到一個(gè)平面的距離相等,那么這條直線和這個(gè)平面平行。 2.下面的四個(gè)命題:( ) (1)若直線a//平面a,則平面a內(nèi)的任何直線都與直線a平行 (2)若直線a^平面a,則平面a內(nèi)的任何直線都與直線a垂直 (3)若平面a//平面b,則平面b內(nèi)的任何直線都與平面a平行 (4)若平面a^平面b,則平面b內(nèi)的任何直線都與平面a垂直; 其中正確的

22、命題的個(gè)數(shù)是:( ) A.0 B.1 C.2 D.3 3.已知平面a與平面b相交,直線m^平面a,則:( ) A.b內(nèi)不一定存在直線與m平行,但必存在直線與m垂直 B.b內(nèi)必存在直線與m平行,且必存在直線與m垂直 C.b內(nèi)不一定存在直線與m平行,不一定存在直線與m垂直 D.b內(nèi)必存在直線與m平行,不一定存在直線與m垂直 4.已知a、b、g表示不同的平面,a、b表示不同的直線,下列命題中正確的是:( ) A.如果a//a,a^b,那么a^b B.如果a^b,b^g,那么a^g C.如

23、果a^a,a^b,那么a//b D.如果a//b,b//a,那么a//a 5.設(shè)a,b表示平面,L表示不在a內(nèi)也不在b內(nèi)的直線,存在下列三個(gè)事實(shí):(1)L^a;(2)a^b;(3)L//b,若以其中兩個(gè)作為條件,另一個(gè)作為結(jié)論,則可以構(gòu)成三個(gè)命題,這三個(gè)命題中,正確命題的個(gè)數(shù)是:( ) A.0 B.1 C.2 D.3 6.設(shè)a、b、c是不同的直線,α,b是不同的平面,下列三個(gè)命題: (1)若a//b,則a與c所成的角和b與c所成的角相等 (2)若a//b,則a與α所成的解和b與α所成的角相等 (3)若α//b,則a與α所成的角和a與b所成的角相等

24、其中,正確命題的個(gè)數(shù)是:( ) A.0 B.1 C.2 D.3 7.已知m、n是直線,a、b、g是平面,給出下列命題 (1)若a^g,b^g則a//b (2)若u^a,u^b,則a//b (3)若a內(nèi)不共線的三點(diǎn)到平面b的距離都相等,則a//b (4)若n ì a,m ì a,且n//b,m//b,則a//b; (5)若m,n為異面直線,且n ì a,n//b,m ì b,m//a,則a//b 其中正確的兩個(gè)命題是:( ) A.(1)與(2) B.(3)與(4) C.(2)與(5) D.(2)與(3) 8.已知直

25、二面角a—L—b,且a ì a,b ì b, 且a,b與L均不垂直,則下列命題正確的是;( ) A.a(chǎn)和b不可能垂直,也不可能平行 B.a(chǎn)和b不可能垂直,但可能平行 C.a(chǎn)和b可能垂直,但不可能平行 D.a(chǎn)和b可能垂直,也可能平行 9.已知直線l1,l2與平面a,有下面四個(gè)命題: (1)若l1//a,l1//l2,則l2//a (2)若l1ìa,l2?a=A,,則l1,l2異面 (3)若l1^a,l2^a,,則l1//l2 (4)若l1^l2,l1^a,則l2//a 其中真命題有:( ) A.0個(gè) B.1個(gè) C.2個(gè) D

26、.3個(gè) 10.正方體ABCD-A1B1C1D1中,直線BD1與直線AC所成的角是:( ) A.30° b.45° c.60° d.90° 11.已知PA垂直于正方形ABCD所在的平面于A點(diǎn),邊PB、PC、PD、AC、BD,則互相垂直的平面有:( ) A.5對(duì) B.6對(duì) C.7對(duì) D.8對(duì) 12.空間有6個(gè)點(diǎn),任意四點(diǎn)都不共面,過其中任意兩點(diǎn)均有一條直線,則成為異面直線的對(duì)數(shù)為( ) A.15 B.30 C.45 D.60 13.下面命題中 (1)兩條異面直線a,b中,a//平面a,則b//a (2)若

27、平面a//平面b,aì a,則a//b (3)若a?b=a,直線a^b,若使b^a,則只須bìb,且a^b (4)直線a,bìa,直線l?a=A且l^a,b^a,則b與l在a內(nèi)的射影垂直( ) A.(1)(2) B.(2)(3) C.(1)(2)(3) D.(2)(3)(4) 14.直線L與△ABC三邊均不相交,L上有四點(diǎn)D、E、F、G且這四點(diǎn)均不在直線AB、AC、BC上,則A、B、C、D、E、F、G七個(gè)點(diǎn)可確定三角形的個(gè)數(shù)是;( ) A.35 B.33 C.31 D.29 15.設(shè)a、b表示直線,a、b、g表示平面,給出下列命題:

28、 (1)若a^g,且b^g,則a//b (2)若a內(nèi)有不共線的三個(gè)點(diǎn)到b的距離相等,則a//b (3)若a ì a,b ì b,且a//b,b//a,則a//b (4)若a,b是異面直線,aìa,bìb,且a//b,b//a,則a//b 其中正確命題的序號(hào)是 。(注,把你認(rèn)為正確的命題的序號(hào)都填上) 16.已知a,b,c是三條不重合的直線,a、b、g是三個(gè)不重合的平面,給出下面六個(gè)命題: (1)若a//c,b//c,則a//b (2)若a//g,b//g,則a//b (3)若a//c,b//c,,則a//b (4)若

29、a//g,b//g,則a//b (5)若a//c,a//c,則a//a (6)若a//g,a//g,則a//a 其中正確的命題的序號(hào)是: 。 17.已知m,l是異面直線,給出下列命題 (1)一定存在平面a過m且與l平行 (2)一定存在平面a與m、l都垂直 (3)一定存在平面a過m且與l垂直 (4)一定存在平面a與m、l的距離相等 其中不正確的命題的序號(hào) 18.設(shè)a、b表示直線,a、b、g表示平面,給出下列命題: (1)若a^g,且b^g,則a//b (2)若a內(nèi)有不共線的三個(gè)點(diǎn)到b的距離相等,

30、則a//b (3)若a ì a,b ì b,且a//b,b//a,則a//b (4)若a,b是異面直線,aìa,bìb,且a//b,b//a,則a//b 其中正確命題的序號(hào)是 。(注,把你認(rèn)為正確的命題的序號(hào)都填上) 19.已知a,b,c是三條不重合的直線,a、b、g是三個(gè)不重合的平面,給出下面六個(gè)命題: (1)若a//c,b//c,則a//b (2)若a//g,b//g,則a//b (3)若a//c,b//c,,則a//b (4)若a//g,b//g,則a//b (5)若a//c,a//c,則a//a (6)若a//g,a//g

31、,則a//a 其中正確的命題的序號(hào)是: 。 20.已知m,l是異面直線,給出下列命題 (1)一定存在平面a過m且與l平行 (2)一定存在平面a與m、l都垂直 (3)一定存在平面a過m且與l垂直 (4)一定存在平面a與m、l的距離相等 其中不正確的命題的序號(hào) 。 21.是不重合的2個(gè)平面,在上任取5個(gè)點(diǎn),在上任取4個(gè)點(diǎn),由這些點(diǎn)所確定的平面的個(gè)數(shù)最多是( C ) A.42個(gè) B.70個(gè) C.72個(gè) D.84個(gè) 22.若平面⊥平面,又直線,直線,且,則( D )

32、 A. B. C.且 D.或 23.已知二面角是直二面角,P為棱AB上一點(diǎn),PQ、PR分別在平面、內(nèi),且,則為( B ) A.45° B.60° C.120° D.150° 24.正方體的棱長為,由它的互不相鄰的四個(gè)頂點(diǎn)連線所構(gòu)成的四面體的體積是 ( C ) A. B. C. D. 26.平行六面體的棱長均為4,由同一頂點(diǎn)出發(fā)的三條棱上分別取1,,則三棱錐的體積與平行六面體的體積之比是( A ) A.1∶64 B.2∶7 C.7∶19 D.3∶16 27.在正方體中,二面角的度數(shù)是( C ) A.45° B.60° C.120° D.135° 28.正方形被對(duì)角線BD和以A為圓心,AB為半徑的圓弧分成三部分,繞AD旋轉(zhuǎn),所得旋轉(zhuǎn)體的體積之比是( C ) A.2∶1∶1 B.1∶2∶1 C.1∶1∶1 D.2∶2∶1 29.在四棱錐的四個(gè)側(cè)面中,直角三角形最多可有( D ) A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!