《2022年中考數(shù)學專題復(fù)習分類練習 圓綜合解答題》由會員分享,可在線閱讀,更多相關(guān)《2022年中考數(shù)學專題復(fù)習分類練習 圓綜合解答題(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年中考數(shù)學專題復(fù)習分類練習 圓綜合解答題
1.如圖,點A在⊙O上,點P是⊙O外一點,PA切⊙O于點A,連接OP交⊙O于點D,作AB⊥OP于點C,交⊙O于點B,連接PB.
(1)求證:PB是⊙O的切線;
(2)若PC=9,AB=6,
①求圖中陰影部分的面積;
②若點E是⊙O上一點,連接AE,BE,當AE=6時,BE= .
2.如圖,四邊形ABCD內(nèi)接于⊙O,AB=AD,對角線BD為⊙O的直徑,AC與BD交于點E.點F為CD延長線上,且DF=BC.
(1)證明:AC=AF;
(2)若AD=2,AF=,求AE的長;
2、
(3)若EG∥CF交AF于點G,連接DG.證明:DG為⊙O的切線.
3.在平面直角坐標系中,點A的坐標是,點M的坐標是,P是射線AM上一點,軸,垂足為B.設(shè).
(1) ;
(2)如圖,以AP為直徑作圓,圓心為點C.若與x軸相切,求的值;
(3)D是x軸上一點,連接AD,PD.若△OAD∽△BDP,試探究滿足條件的點D的個數(shù)直接寫出點D的個數(shù)及相應(yīng)的取值范圍,不必說明理由.
4.如圖,在等腰△ABC中,AB=AC,以AB為直徑的圓O交BC于點D,過點C作CF∥AB,與⊙O的切線BE交于點E,連接DE.
(1)求證:BD=CD;
3、
(2)求證:△CAB∽△CDE;
(3)設(shè)△ABC的面積為S1,△CDE的面積為S2,直徑AB的長為x,若∠ABC=30°,S1、S2 滿足S1+S2=,試求x的值.
5.如圖,AB為的直徑,直線于點.點C在上,分別連接,,且的延長線交于點.為的切線交于點F.
(1)求證:;
(2)連接. 若,,求線段的長.
6.如圖,是的直徑,是的中點,弦于點,過點作交的延長線于點.
(1)連接,則= ;
(2)求證:與相切;
(3)點在上,,交于點.若,求的長.
4、
7.如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,延長BC到點F,連接AF,使∠ABC=2∠CAF.
(1)求證:AF是⊙O的切線;
(2)若AC=4,CE:EB=1:3,求CE的長.
8.如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于點E,連接CE.
(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若E是的中點,⊙O的半徑為2,求圖中陰影部分的面積.
9.如圖,在扇形AOB中,∠AOB=120°,弦AB=,點M是上任意一點(與端點A、B不重合),ME⊥AB于點E,以點M為圓心,ME長為半徑作⊙M,分別過點A、B作⊙M的切線,兩切線相交于點C.
(1)求的長;
(2)試判斷∠ACB的大小是否隨點M的運動而改變?若不變,請求出∠ACB的大小;若改變,請說明理由.
10.如圖,內(nèi)接于⊙,,的平分線與⊙交于點,與交于點,延長,與的延長線交于點,連接,是的中點,連接.
(1)判斷與的位置關(guān)系,寫出你的結(jié)論并證明;
(2)求證:;
(3)若,求⊙的面積.