影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

高考數(shù)學二輪復習 專題訓練九 第2講 數(shù)形結(jié)合思想 理

上傳人:xt****7 文檔編號:106101171 上傳時間:2022-06-13 格式:DOC 頁數(shù):9 大?。?59.52KB
收藏 版權申訴 舉報 下載
高考數(shù)學二輪復習 專題訓練九 第2講 數(shù)形結(jié)合思想 理_第1頁
第1頁 / 共9頁
高考數(shù)學二輪復習 專題訓練九 第2講 數(shù)形結(jié)合思想 理_第2頁
第2頁 / 共9頁
高考數(shù)學二輪復習 專題訓練九 第2講 數(shù)形結(jié)合思想 理_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學二輪復習 專題訓練九 第2講 數(shù)形結(jié)合思想 理》由會員分享,可在線閱讀,更多相關《高考數(shù)學二輪復習 專題訓練九 第2講 數(shù)形結(jié)合思想 理(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、高考數(shù)學二輪復習 專題訓練九 第2講 數(shù)形結(jié)合思想 理 1.數(shù)形結(jié)合的數(shù)學思想:包含“以形助數(shù)”和“以數(shù)輔形”兩個方面,其應用大致可以分為兩種情形:一是借助形的生動性和直觀性來闡明數(shù)之間的聯(lián)系,即以形作為手段,數(shù)作為目的,比如應用函數(shù)的圖象來直觀地說明函數(shù)的性質(zhì);二是借助于數(shù)的精確性和規(guī)范嚴密性來闡明形的某些屬性,即以數(shù)作為手段,形作為目的,如應用曲線的方程來精確地闡明曲線的幾何性質(zhì). 2.運用數(shù)形結(jié)合思想分析解決問題時,要遵循三個原則: (1)等價性原則.在數(shù)形結(jié)合時,代數(shù)性質(zhì)和幾何性質(zhì)的轉(zhuǎn)換必須是等價的,否則解題將會出現(xiàn)漏洞.有時,由于圖形的局限性,不能完整的表現(xiàn)數(shù)的一般性,這時圖形

2、的性質(zhì)只能是一種直觀而淺顯的說明,要注意其帶來的負面效應. (2)雙方性原則.既要進行幾何直觀分析,又要進行相應的代數(shù)抽象探求,僅對代數(shù)問題進行幾何分析容易出錯. (3)簡單性原則.不要為了“數(shù)形結(jié)合”而數(shù)形結(jié)合.具體運用時,一要考慮是否可行和是否有利;二要選擇好突破口,恰當設參、用參、建立關系、做好轉(zhuǎn)化;三要挖掘隱含條件,準確界定參變量的取值范圍,特別是運用函數(shù)圖象時應設法選擇動直線與定二次曲線. 3.數(shù)形結(jié)合思想解決的問題常有以下幾種: (1)構建函數(shù)模型并結(jié)合其圖象求參數(shù)的取值范圍. (2)構建函數(shù)模型并結(jié)合其圖象研究方程根的范圍. (3)構建函數(shù)模型并結(jié)合其圖象研究量與量之

3、間的大小關系. (4)構建函數(shù)模型并結(jié)合其幾何意義研究函數(shù)的最值問題和證明不等式. (5)構建立體幾何模型研究代數(shù)問題. (6)構建解析幾何中的斜率、截距、距離等模型研究最值問題. (7)構建方程模型,求根的個數(shù). (8)研究圖形的形狀、位置關系、性質(zhì)等. 4.數(shù)形結(jié)合思想是解答高考數(shù)學試題的一種常用方法與技巧,特別是在解選擇題、填空題時發(fā)揮著奇特功效,這就要求我們在平時學習中加強這方面的訓練,以提高解題能力和速度.具體操作時,應注意以下幾點: (1)準確畫出函數(shù)圖象,注意函數(shù)的定義域. (2)用圖象法討論方程(特別是含參數(shù)的方程)的解的個數(shù)是一種行之有效的方法,值得注意的是首

4、先要把方程兩邊的代數(shù)式看作是兩個函數(shù)的表達式(有時可能先作適當調(diào)整,以便于作圖),然后作出兩個函數(shù)的圖象,由圖求解. 熱點一 利用數(shù)形結(jié)合思想討論方程的根 例1 (xx·山東)已知函數(shù)f(x)=|x-2|+1,g(x)=kx,若方程f(x)=g(x)有兩個不相等的實根,則實數(shù)k的取值范圍是(  ) A.(0,) B.(,1) C.(1,2) D.(2,+∞) 答案 B 解析 先作出函數(shù)f(x)=|x-2|+1的圖象,如圖所示,當直線g(x)=kx與直線AB平行時斜率為1,當直線g(x)=kx過A點時斜率為,故f(x)=g(x)有兩個不相等的實根時,k的范圍為(,1).

5、 思維升華 用函數(shù)的圖象討論方程(特別是含參數(shù)的指數(shù)、對數(shù)、根式、三角等復雜方程)的解的個數(shù)是一種重要的思想方法,其基本思想是先把方程兩邊的代數(shù)式看作是兩個熟悉函數(shù)的表達式(不熟悉時,需要作適當變形轉(zhuǎn)化為兩個熟悉的函數(shù)),然后在同一坐標系中作出兩個函數(shù)的圖象,圖象的交點個數(shù)即為方程解的個數(shù).  設函數(shù)f(x)=若f(-4)=f(0),f(-2)=-2,則關于x的方程f(x)=x的解的個數(shù)為(  ) A.1 B.2 C.3 D.4 答案 C 解析 由f(-4)=f(0),f(-2)=-2, 解得b=4,c=2,∴f(x)= 作出函數(shù)y=f(x)及y=x的函數(shù)圖象如圖所示,

6、 由圖可得交點有3個. 熱點二 利用數(shù)形結(jié)合思想解不等式、求參數(shù)范圍 例2 (1)已知奇函數(shù)f(x)的定義域是{x|x≠0,x∈R},且在(0,+∞)上單調(diào)遞增,若f(1)=0,則滿足x·f(x)<0的x的取值范圍是________. (2)若不等式|x-2a|≥x+a-1對x∈R恒成立,則a的取值范圍是________. 答案 (1)(-1,0)∪(0,1)  (2) 解析 (1)作出符合條件的一個函數(shù)圖象草圖即可,由圖可知x·f(x)<0的x的取值范圍是(-1,0)∪(0,1). (2)作出y=|x-2a|和y=x+a-1的簡圖,依題意知應有2a≤2-2a, 故a≤

7、. 思維升華 求參數(shù)范圍或解不等式問題時經(jīng)常聯(lián)系函數(shù)的圖象,根據(jù)不等式中量的特點,選擇適當?shù)膬蓚€(或多個)函數(shù),利用兩個函數(shù)圖象的上、下位置關系轉(zhuǎn)化數(shù)量關系來解決問題,往往可以避免煩瑣的運算,獲得簡捷的解答.  (1)設A={(x,y)|x2+(y-1)2=1},B={(x,y)|x+y+m≥0},則使A?B成立的實數(shù)m的取值范圍是__________. (2)若不等式≤k(x+2)-的解集為區(qū)間[a,b],且b-a=2,則k=________. 答案 (1)[-1,+∞) (2) 解析 (1)集合A是一個圓x2+(y-1)2=1上的點的集合,集合B是一個不等式x+y+m≥0表示的平

8、面區(qū)域內(nèi)的點的集合, 要使A?B,則應使圓被平面區(qū)域所包含(如圖),即直線x+y+m=0應與圓相切或相離(在圓的下方),而當直線與圓相切時有=1,又m>0, 所以m=-1, 故m的取值范圍是m≥-1. (2)令y1=, y2=k(x+2)-,在同一個坐標系中作出其圖象,因≤k(x+2)-的解集為[a,b]且b-a=2. 結(jié)合圖象知b=3,a=1,即直線與圓的交點坐標為(1,2). 又因為點(-2,-)在直線上, 所以k==. 熱點三 利用數(shù)形結(jié)合思想解最值問題 例3 (1)已知P是直線l:3x+4y+8=0上的動點,PA、PB是圓x2+y2-2x-2y+1=0的兩條切線

9、,A、B是切點,C是圓心,則四邊形PACB面積的最小值為________. (2)已知點P(x,y)的坐標x,y滿足則x2+y2-6x+9的取值范圍是(  ) A.[2,4] B.[2,16] C.[4,10] D.[4,16] 答案 (1)2 (2)B 解析 (1)從運動的觀點看問題,當動點P沿直線3x+4y+8=0向左上方或右下方無窮遠處運動時,直角三角形PAC的面積SRt△PAC=|PA|·|AC|=|PA|越來越大,從而S四邊形PACB也越來越大;當點P從左上、右下兩個方向向中間運動時,S四邊形PACB變小,顯然,當點P到達一個最特殊的位置,即CP垂直直線l時,S四邊

10、形PACB應有唯一的最小值, 此時|PC|==3, 從而|PA|==2. 所以(S四邊形PACB)min =2××|PA|×|AC|=2. (2)畫出可行域如圖,所求的x2+y2-6x+9=(x-3)2+y2是點Q(3,0)到可行域上的點的距離的平方,由圖形知最小值為Q到射線x-y-1=0(x≥0)的距離d的平方,最大值為|QA|2=16. ∵d2=()2=()2=2. ∴取值范圍是[2,16]. 思維升華 (1)在幾何的一些最值問題中,可以根據(jù)圖形的性質(zhì)結(jié)合圖形上點的條件進行轉(zhuǎn)換,快速求得最值. (2)如果(不)等式、代數(shù)式的結(jié)構蘊含著明顯的幾何特征,就要考慮用數(shù)形結(jié)合的思想

11、方法來解題,即所謂的幾何法求解.  (1)(xx·重慶)設P是圓(x-3)2+(y+1)2=4上的動點,Q是直線x=-3上的動點,則|PQ|的最小值為(  ) A.6 B.4 C.3 D.2 (2)若實數(shù)x、y滿足則的最小值是____. 答案 (1)B (2)2 解析 (1)由題意,知圓的圓心坐標為(3,-1),圓的半徑長為2,|PQ|的最小值為圓心到直線x=-3的距離減去圓的半徑長,所以|PQ|min=3-(-3)-2=4.故選B. (2)可行域如圖所示. 又的幾何意義是可行域內(nèi)的點與坐標原點連線的斜率k. 由圖知,過點A的直線OA的斜率最小. 聯(lián)立得A(1,2),

12、 所以kOA==2.所以的最小值為2. 1.在數(shù)學中函數(shù)的圖象、方程的曲線、不等式所表示的平面區(qū)域、向量的幾何意義、復數(shù)的幾何意義等都實現(xiàn)以形助數(shù)的途徑,當試題中涉及這些問題的數(shù)量關系時,我們可以通過圖形分析這些數(shù)量關系,達到解題的目的. 2.有些圖形問題,單純從圖形上無法看出問題的結(jié)論,這就要對圖形進行數(shù)量上的分析,通過數(shù)的幫助達到解題的目的. 3.利用數(shù)形結(jié)合解題,有時只需把圖象大致形狀畫出即可,不需要精確圖象. 4.數(shù)形結(jié)合思想常用模型:一次、二次函數(shù)圖象;斜率公式;兩點間的距離公式(或向量的模、復數(shù)的模);點到直線的距離公式等. 真題感悟 1.(xx·重慶)已知圓C

13、1:(x-2)2+(y-3)2=1,圓C2:(x-3)2+(y-4)2=9,M,N分別是圓C1,C2上的動點,P為x軸上的動點,則|PM|+|PN|的最小值為(  ) A.5-4 B.-1 C.6-2 D. 答案 A 解析 設P(x,0),設C1(2,3)關于x軸的對稱點為C1′(2,-3),那么|PC1|+|PC2|=|PC1′|+|PC2|≥|C1′C2|==5. 而|PM|+|PN|=|PC1|+|PC2|-4≥5-4. 2.(xx·江西)在平面直角坐標系中,A,B分別是x軸和y軸上的動點,若以AB為直徑的圓C與直線2x+y-4=0相切,則圓C面積的最小值為(  )

14、 A.π B.π C.(6-2)π D.π 答案 A 解析 ∵∠AOB=90°,∴點O在圓C上. 設直線2x+y-4=0與圓C相切于點D, 則點C與點O間的距離等于它到直線2x+y-4=0的距離, ∴點C在以O為焦點,以直線2x+y-4=0為準線的拋物線上, ∴當且僅當O,C,D共線時,圓的直徑最小為|OD|. 又|OD|==, ∴圓C的最小半徑為, ∴圓C面積的最小值為π()2=π. 3.(xx·課標全國Ⅰ)已知函數(shù)f(x)=若|f(x)|≥ax,則a的取值范圍是(  ) A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0] 答案

15、 D 解析 函數(shù)y=|f(x)|的圖象如圖. ①當a=0時,|f(x)|≥ax顯然成立. ②當a>0時,只需在x>0時, ln(x+1)≥ax成立. 比較對數(shù)函數(shù)與一次函數(shù)y=ax的增長速度. 顯然不存在a>0使ln(x+1)≥ax在x>0上恒成立. ③當a<0時,只需在x<0時,x2-2x≥ax成立. 即a≥x-2成立,所以a≥-2. 綜上所述:-2≤a≤0.故選D. 4.(xx·天津)已知函數(shù)f(x)=|x2+3x|,x∈R.若方程f(x)-a|x-1|=0恰有4個互異的實數(shù)根,則實數(shù)a的取值范圍為________. 答案 (0,1)∪(9,+∞) 解析 設y1=f

16、(x)=|x2+3x|,y2=a|x-1|, 在同一直角坐標系中作出y1=|x2+3x|,y2=a|x-1|的圖象如圖所示. 由圖可知f(x)-a|x-1|=0有4個互異的實數(shù)根等價于y1=|x2+3x|與y2=a|x-1|的圖象有4個不同的交點.當4個交點橫坐標都小于1時, 有兩組不同解x1,x2, 消y得x2+(3-a)x+a=0,故Δ=a2-10a+9>0, 且x1+x2=a-3<2,x1x2=a<1,聯(lián)立可得00, 且x3

17、+x4=a-3>2,x3x4=a>1,聯(lián)立可得a>9, 綜上知,09. 押題精練 1.方程|x2-2x|=a2+1(a>0)的解的個數(shù)是(  ) A.1 B.2 C.3 D.4 答案 B 解析 (數(shù)形結(jié)合法) ∵a>0,∴a2+1>1. 而y=|x2-2x|的圖象如圖, ∴y=|x2-2x|的圖象與y=a2+1的圖象總有兩個交點. 2.不等式|x+3|-|x-1|≤a2-3a對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為(  ) A.(-∞,-1]∪[4,+∞) B.(-∞,-2]∪[5,+∞) C.[1,2] D.(-∞,1]∪[2,+∞) 答案 

18、A 解析 f(x)=|x+3|-|x-1|=畫出函數(shù)f(x)的圖象,如圖,可以看出函數(shù)f(x)的最大值為4,故只要a2-3a≥4即可,解得a≤-1或a≥4.正確選項為A. 3.經(jīng)過P(0,-1)作直線l,若直線l與連接A(1,-2),B(2,1)的線段總有公共點,則直線l的斜率k和傾斜角α的取值范圍分別為________,________. 答案 [-1,1] [0,]∪[,π) 解析 如圖所示,結(jié)合圖形:為使l與線段AB總有公共點,則kPA≤k≤kPB,而kPB>0,kPA<0,故k<0時,傾斜角α為鈍角,k=0時,α=0,k>0時,α為銳角. 又kPA==-1, kPB==1,

19、∴-1≤k≤1. 又當0≤k≤1時,0≤α≤; 當-1≤k<0時,≤α<π.故傾斜角α的取值范圍為α∈[0,]∪[,π). 4.(xx·山東)在平面直角坐標系xOy中,M為不等式組所表示的區(qū)域上一動點,則|OM|的最小值是________. 答案  解析 由題意知原點O到直線x+y-2=0的距離為|OM|的最小值. 所以|OM|的最小值為=. 5.(xx·江西)過點(,0)引直線l與曲線y=相交于A、B兩點,O為坐標原點,當△AOB的面積取最大值時,直線l的斜率為________. 答案 - 解析 ∵S△AOB=|OA||OB|sin∠AOB=sin∠AOB≤. 當∠AOB

20、=時,S△AOB面積最大. 此時O到AB的距離d=. 設AB方程為y=k(x-)(k<0),即kx-y-k=0. 由d==得k=-. 6.設函數(shù)f(x)=ax3-3ax,g(x)=bx2-ln x(a,b∈R),已知它們在x=1處的切線互相平行. (1)求b的值; (2)若函數(shù)F(x)=且方程F(x)=a2有且僅有四個解,求實數(shù)a的取值范圍. 解 函數(shù)g(x)=bx2-ln x的定義域為(0,+∞), (1)f′(x)=3ax2-3a?f′(1)=0, g′(x)=2bx-?g′(1)=2b-1, 依題意得2b-1=0,所以b=. (2)x∈(0,1)時,g′(x)=x-

21、<0,即g(x)在(0,1)上單調(diào)遞減, x∈(1,+∞)時,g′(x)=x->0,即g(x)在(1,+∞)上單調(diào)遞增, 所以當x=1時,g(x)取得極小值g(1)=; 當a=0時,方程F(x)=a2不可能有四個解; 當a<0,x∈(-∞,-1)時,f′(x)<0,即f(x)在(-∞,-1)上單調(diào)遞減, x∈(-1,0)時,f′(x)>0, 即f(x)在(-1,0)上單調(diào)遞增, 所以當x=-1時,f(x)取得極小值f(-1)=2a, 又f(0)=0,所以F(x)的圖象如圖(1)所示, 從圖象可以看出F(x)=a2不可能有四個解. 當a>0,x∈(-∞,-1)時,f′(x)>0, 即f(x)在(-∞,-1)上單調(diào)遞增, x∈(-1,0)時,f′(x)<0, 即f(x)在(-1,0)上單調(diào)遞減, 所以當x=-1時,f(x)取得極大值f(-1)=2a. 又f(0)=0,所以F(x)的圖象如圖(2)所示, 從圖(2)看出,若方程F(x)=a2有四個解,則

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!