《湖南省2022年中考數(shù)學總復習 第三單元 函數(shù)及其圖象 課時訓練12 一次函數(shù)的應用練習》由會員分享,可在線閱讀,更多相關《湖南省2022年中考數(shù)學總復習 第三單元 函數(shù)及其圖象 課時訓練12 一次函數(shù)的應用練習(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、湖南省2022年中考數(shù)學總復習 第三單元 函數(shù)及其圖象 課時訓練12 一次函數(shù)的應用練習
12
一次函數(shù)的應用
限時:30分鐘
夯實基礎
1.某圓形零件的制作成本y(元)與它的面積成正比例,設半徑為r(cm),當r=2 cm時,y=20元,那么當制作成本為125元時,半徑是 ( )
A.5 cm B. cm C.10 cm D.25 cm
2.小亮每天從家去學校上學行走的路程為900米,某天他從家去上學時以每分鐘30米的速度行走了前半程,為了不遲到他加快了速度,以每分鐘45米的速度行走完了剩下的路程,那么小亮行走的路程y(米)與他行走的時間t(分)(t>15)之間
2、的函數(shù)關系正確的是 ( )
A.y=30t(t>15)
B.y=900-30t(t>15)
C.y=45t-225(t>15)
D.y=45t-675(t>15)
3.如圖K12-1,函數(shù)y=2x和y=ax+4的圖象相交于點A(m,3),則方程2x=ax+4的解為 ( )
圖K12-1
A.x= B.x=3
C.x=- D.x=-3
4.[xx·天門] 甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80 km/h的速度行駛1 h后,乙車才沿相同路線行駛.乙車先到達B地并停留1 h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)
3、與乙車行駛時間x(h)之間的函數(shù)關系如圖K12-2所示.下列說法:①乙車的速度是120 km/h;②m=160;③點H的坐標是(7,80);④n=7.5.其中說法正確的是 ( )
圖K12-2
A.①②③ B.①②④
C.①③④ D.①②③④
5.[xx·吉林] 小玲和弟弟小東分別從家和圖書館同時出發(fā),沿同一條路相向而行,小玲開始跑步中途改為步行,到達圖書館恰好用30 min.小東騎自行車以300 m/min的速度直接回家.兩人離家的路程y(m)與各自離開出發(fā)地的時間x(min)之間的函數(shù)圖象如圖K12-3所示.
(1)家與圖書館之間的路程為 m,小玲步
4、行的速度為 m/min;?
(2)求小東離家的路程y關于x的函數(shù)表達式,并寫出自變量的取值范圍;
(3)求兩人相遇的時間.
圖K12-3
6.[xx·遵義] 在水果銷售旺季,某水果店購進一優(yōu)質水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克.根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關系:
銷售量y/千克
…
34.8
32
29.6
28
…
售價x/(元/千克)
…
22.6
24
25.2
26
…
(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.
5、
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元/千克?
能力提升
7.[xx·資陽] 已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點坐標為,m,則不等式組mx-2 B.
6、B方式可上網(wǎng)的時間比A方式多
C.每月上網(wǎng)時間為35 h時,選擇B方式最省錢
D.每月上網(wǎng)時間超過70 h時,選擇C方式最省錢
9.[xx·揚州] 如圖K12-5,在等腰直角三角形ABO中,∠A=90°,點B的坐標為(0,2).若直線l:y=mx+m(m≠0)把△ABO分成面積相等的兩部分,則m的值為 .?
圖K12-5
10.[xx·義烏] 實驗室里有一個水平放置的長方體容器,從內部量得它的高是15 cm,底面的長是30 cm,寬是20 cm,容器內的水深為x cm.現(xiàn)往容器內放入如圖K12-6所示的長方體實心鐵塊(鐵塊一面平放在容器底面),過頂點A的三條棱的長分別是
7、10 cm,10 cm,y cm(y≤15),當鐵塊的頂部高出水面2 cm時,x,y滿足的關系式是 .?
圖K12-6
拓展練習
11.為緩解油價上漲給出租車行業(yè)帶來的成本壓力,某巿自xx年11月17日起,調整出租車運價,調整方案見下面表格及圖象(其中a,b,c為常數(shù)):
行駛路程
收費標準
調價前
調價后
不超過3 km的部分
起步價6元
起步價a元
超過3 km不
超過6 km的部分
每千米2.1元
每千米b元
超過6 km的部分
每千米c元
設行駛路程x km時,調價前的運價為y1(元),調價后的運價為y2(元).如圖K12-7,折線ABCD
8、表示y2與x之間的函數(shù)關系式,線段EF表示當0≤x≤3時,y1與x的函數(shù)關系式,根據(jù)圖表信息,完成下列各題:
(1)填空:a= ,b= ,c= .?
(2)寫出當x>3時,y1與x的函數(shù)表達式,并在圖K12-7中畫出該函數(shù)的圖象.
(3)函數(shù)y1與y2的圖象是否存在交點?若存在,求出交點的坐標,并說明該點的實際意義;若不存在,請說明理由.
圖K12-7
參考答案
1.A 2.C 3.A
4.A [解析] 由圖象可知,乙車出發(fā)時,甲、乙相距80 km,2小時后,乙車追上甲車,則說明乙車每小時比甲車快40 km,乙車的速度為120 km/h,①正確;
9、第2~6小時,乙車由相遇點到達B,用時4小時,又每小時比甲車快40 km,則此時甲、乙距離4×40=160 km,m=160,②正確;當乙在B休息1 h時,甲前進80 km,則點H的坐標為(7,80),③正確;乙返回時,甲、乙相距80 km,到兩車相遇用時80÷(120+80)=0.4(小時),則n=6+1+0.4=7.4,④錯誤.故選A.
5.解:(1)4000 100
(2)∵小東從圖書館到家的時間==(min),
∴D,0.
設CD的解析式為y=kx+b(k≠0).
∵圖象經(jīng)過C(0,4000),D,0兩點,
∴解得
∴y=-300x+4000.
∴小東離家的路程y關于x
10、的函數(shù)表達式為y=-300x+40000≤x≤.
(3)設OA的解析式為y=mx(m≠0).
∵圖象過點A(10,2000),
∴10m=2000.解得m=200.
∴OA的解析式為y=200x(0≤x≤10).
解方程組得
答:兩人出發(fā)8分鐘后相遇.
6.解:(1)由水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足一次函數(shù)關系,
可設y=kx+b,根據(jù)當x=24時,y=32,當x=26時,y=28,得解得
所以y=-2x+80.
當x=23.5時,y=33.
答:當天水果的銷售量為33千克.
(2)設售價為m元,當天的銷售量為(-2m+80)千克.
根據(jù)題意
11、,得(m-20)(-2m+80)=150.
解得m1=25,m2=35.
因為售價不低于20元/千克,且不超過32元/千克,
所以m2=35舍去.
答:該天水果的售價為25元/千克.
7.B [解析] 把,m代入y1=kx+1,可得m=k+1.解得k=m-2.∴y1=(m-2)x+1.令y3=mx-2,當y3.∴不等式組mx-2
12、月上網(wǎng)費用≥50元時,B方式可上網(wǎng)的時間比A方式多,結論B正確;設當x≥25時,yA=kx+b,將(25,30),(55,120)代入yA=kx+b,得解得∴yA=3x-45(x≥25).當x=35時,yA=3×35-45=60>50,∴每月上網(wǎng)時間為35 h時,選擇B方式最省錢,結論C正確;設當x≥50時,yB=mx+n,將(50,50),(55,65)代入yB=mx+n,得解得∴yB=3x-100(x≥50),當x=70時,yB=3×70-100=110<120,∴結論D錯誤.故選D.
9. [解析] 設直線l與y軸的交點為C,∵y=mx+m=m(x+1),∴函數(shù)y=mx+m一定過點(-
13、1,0).當x=0時,y=m,∴點C的坐標為(0,m).由題意可得直線AB的表達式為y=-x+2,由解得∵直線l:y=mx+m(m≠0)把△ABO分成面積相等的兩部分,∴(2-m)·=,解得m=或m=(舍去).故答案為.
10.y=(6≤x<8)或y=0
14、實心鐵塊的棱長為10 cm和10 cm的那一面平放在長方體容器的底面時,
同①的方法,得y=03時,y1與x的關系式為y1=6+(x-3)×2.1,
整理,得y1=2.1x-0.3.
函數(shù)圖象如圖所示.
(3)由圖得,當3時方案調價后合算.