(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第12講 函數(shù)與方程導(dǎo)學(xué)案 新人教A版
《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第12講 函數(shù)與方程導(dǎo)學(xué)案 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第12講 函數(shù)與方程導(dǎo)學(xué)案 新人教A版(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第12講 函數(shù)與方程 【課程要求】 1.結(jié)合二次函數(shù)的圖象,了解函數(shù)的零點(diǎn)與方程根的聯(lián)系,判斷根的存在性與根的個(gè)數(shù). 2.利用函數(shù)的零點(diǎn)求解參數(shù)的取值范圍. 對(duì)應(yīng)學(xué)生用書(shū)p31 【基礎(chǔ)檢測(cè)】 1.判斷下列結(jié)論是否正確(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“×”) (1)函數(shù)的零點(diǎn)就是函數(shù)的圖象與x軸的交點(diǎn).( ) (2)函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn)(函數(shù)圖象連續(xù)不斷),則f(a)·f(b)<0.( ) (3)二次函數(shù)y=ax2+bx+c(a≠0)在b2-4ac<0時(shí)沒(méi)有零點(diǎn).( ) (4)f(x)=x2,g(x)=2x
2、,h(x)=log2x,當(dāng)x∈(4,+∞)時(shí),恒有h(x)
3、,所以f(x)在R上單調(diào)遞增,又f(-1)=-3<0,f(0)=1>0,因此函數(shù)f(x)有且只有一個(gè)零點(diǎn). [答案]1 4.[必修1p92A組T4]函數(shù)f(x)=x-的零點(diǎn)個(gè)數(shù)為_(kāi)___________. [解析]作函數(shù)y1=x和y2=的圖象如圖所示, 由圖象知函數(shù)f(x)有1個(gè)零點(diǎn). [答案]1 5.(多選)下列圖象表示的函數(shù)中不能用二分法求零點(diǎn)的是( ) [解析]A中函數(shù)沒(méi)有零點(diǎn),因此不能用二分法求零點(diǎn);B中函數(shù)的圖象不連續(xù),因此不能用二分法求零點(diǎn);D中函數(shù)在x軸下方?jīng)]有圖象,因此不能用二分法求零點(diǎn),故選ABD. [答案]ABD 6.已知函數(shù)f(x)=x-(
4、x>0),g(x)=x+ex,h(x)=x+lnx的零點(diǎn)分別為x1,x2,x3,則( )
A.x1 5、函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是__連續(xù)不斷__的一條曲線,并且有__f(a)·f(b)<0__,那么,函數(shù)y=f(x)在區(qū)間__(a,b)__內(nèi)有零點(diǎn),即存在c∈(a,b),使得__f(c)=0__,這個(gè)__c__也就是方程f(x)=0的根.
2.有關(guān)函數(shù)零點(diǎn)的結(jié)論
(1)若連續(xù)不斷的函數(shù)f(x)在定義域上是單調(diào)函數(shù),則f(x)至多有一個(gè)零點(diǎn).
(2)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號(hào).
(3)連續(xù)不斷的函數(shù)圖象通過(guò)零點(diǎn)時(shí),函數(shù)值可能變號(hào),也可能不變號(hào).
3.二次函數(shù)y=ax2+bx+c (a>0)的圖象與零點(diǎn)的關(guān)系
Δ>0
Δ=0
Δ<0
6、
二次函數(shù)y=ax2+bx+c(a>0)的圖象
與x軸的交點(diǎn)
__(x1__,0),(x2,0)__
__(x1,0)__
無(wú)交點(diǎn)
零點(diǎn)個(gè)數(shù)
__2__
__1__
__0__
對(duì)應(yīng)學(xué)生用書(shū)p32
函數(shù)零點(diǎn)區(qū)間的判定和求解
例1 (1)已知函數(shù)f(x)=則函數(shù)f(x)在區(qū)間上有__________個(gè)零點(diǎn).
[解析]當(dāng)x≤1時(shí),由f(x)=2x-1=0,解得x=0∈;
所以函數(shù)f(x)在區(qū)間[0,1]上只有1個(gè)零點(diǎn).
[答案]1
(2)若a
7、( )
A.(a,b)和(b,c)內(nèi)
B.(-∞,a)和(a,b)內(nèi)
C.(b,c)和(c,+∞)內(nèi)
D.(-∞,a)和(c,+∞)
[解析]∵a0,
f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,
由函數(shù)零點(diǎn)存在性定理可知,在區(qū)間(a,b),(b,c)內(nèi)分別存在零點(diǎn),又函數(shù)f(x)是二次函數(shù),最多有兩個(gè)零點(diǎn).因此函數(shù)f(x)的兩個(gè)零點(diǎn)分別位于區(qū)間(a,b),(b,c)內(nèi),故選A.
[答案]A
[小結(jié)]函數(shù)零點(diǎn)的判定方法:
(1)解方程法:若對(duì)應(yīng)方程f(x)=0可解,通過(guò)解方程,則方程有幾個(gè)解就對(duì)應(yīng)有幾 8、個(gè)零點(diǎn).
(2)函數(shù)零點(diǎn)的存在性定理法:利用定理不僅要判斷函數(shù)圖象在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對(duì)稱性)才能確定函數(shù)的零點(diǎn)個(gè)數(shù).
(3)數(shù)形結(jié)合法:合理轉(zhuǎn)化為兩個(gè)函數(shù)的圖象(易畫(huà)出圖象)的交點(diǎn)個(gè)數(shù)問(wèn)題.先畫(huà)出兩個(gè)函數(shù)的圖象,看其交點(diǎn)的個(gè)數(shù),其中交點(diǎn)的個(gè)數(shù),就是函數(shù)零點(diǎn)的個(gè)數(shù).
1.若x0是方程=x的解,則x0屬于區(qū)間( )
A.B.
C.D.
[解析]令g(x)=,f(x)=x,
則g(0)=1>f(0)=0,g=<f=,g=>f=,
結(jié)合圖象可得<x0<.
[答案]C
2.已知 9、函數(shù)f(x)=則函數(shù)y=f(f(x))+1在區(qū)間上的零點(diǎn)的個(gè)數(shù)是( )
A.4B.3C.2D.1
[解析]由f(f(x))+1=0,得f(f(x))=-1,
由f(-2)=f=-1,得f(x)=-2或f(x)=.
若f(x)=-2,則x=-3或x=;
若f(x)=,則x=-或x=.
綜上可得函數(shù)y=f(f(x))+1在區(qū)間上的零點(diǎn)的個(gè)數(shù)是2,故選C.
[答案]C
函數(shù)零點(diǎn)個(gè)數(shù)的判斷和求解
例2 (1)已知函數(shù)f(x)=函數(shù)g(x)=3-f(2-x),則函數(shù)y=f(x)-g(x)的零點(diǎn)個(gè)數(shù)為( )
A.2B.3C.4D.5
[解析]由已知條件可得g(x)=3-f(2 10、-x)=函數(shù)y=f(x)-g(x)的零點(diǎn)個(gè)數(shù)即為函數(shù)y=f(x)與y=g(x)圖象的交點(diǎn)個(gè)數(shù),在平面直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)與y=g(x)的圖象如圖所示.由圖可知函數(shù)y=f(x)與y=g(x)的圖象有2個(gè)交點(diǎn),所以函數(shù)y=f(x)-g(x)的零點(diǎn)個(gè)數(shù)為2,故選A.
[答案]A
(2)函數(shù)f(x)=4cos2·cos-2sinx-|ln(x+1)|的零點(diǎn)個(gè)數(shù)為_(kāi)___________.
[解析]f(x)=2(1+cosx)sinx-2sinx-|ln(x+1)|=sin2x-|ln(x+1)|,x>-1,
函數(shù)f(x)的零點(diǎn)個(gè)數(shù)即為函數(shù)y1=sin2x(x>-1)與y2=|ln( 11、x+1)|(x>-1)的圖象的交點(diǎn)個(gè)數(shù).
分別作出兩個(gè)函數(shù)的圖象,如圖,可知有兩個(gè)交點(diǎn),則f(x)有兩個(gè)零點(diǎn).
[答案]2
[小結(jié)]判斷函數(shù)零點(diǎn)個(gè)數(shù)的方法
(1)直接法:解方程f(x)=0,方程有幾個(gè)解,函數(shù)f(x)就有幾個(gè)零點(diǎn);
(2)圖象法:畫(huà)出函數(shù)f(x)的圖象,函數(shù)f(x)的圖象與x軸的交點(diǎn)個(gè)數(shù)即為函數(shù)f(x)的零點(diǎn)個(gè)數(shù);
(3)將函數(shù)f(x)拆成兩個(gè)常見(jiàn)函數(shù)h(x)和g(x)的差,從而f(x)=0?h(x)-g(x)=0?h(x)=g(x),則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)即為函數(shù)y=h(x)與函數(shù)y=g(x)的圖象的交點(diǎn)個(gè)數(shù);
(4)二次函數(shù)的零點(diǎn)問(wèn)題,通過(guò)相應(yīng)的二次方程 12、的判別式Δ來(lái)判斷.
3.函數(shù)y=(x-1)2-logax(其中a>1)零點(diǎn)的個(gè)數(shù)是( )
A.0B.1C.2D.3
[解析]函數(shù)y=(x-1)2-logax(其中a>1)零點(diǎn)的個(gè)數(shù)就是y=(x-1)2的圖象與y=logax(其中a>1)圖象交點(diǎn)個(gè)數(shù),在同一坐標(biāo)系內(nèi)畫(huà)出y=(x-1)2的圖象與y=logax(其中a>1)圖象,如圖,由圖可知,y=(x-1)2的圖象與y=logax(其中a>1)圖象有兩個(gè)交點(diǎn),所以函數(shù)y=(x-1)2-logax(其中a>1)零點(diǎn)的個(gè)數(shù)是2.
[答案]C
4.已知a>1,方程ex+x-a=0與lnx+x-a=0的根分別為x1,x2,若m=x+x 13、+2x1x2,則m的取值范圍為_(kāi)_______.
[解析]方程ex+x-a=0的根,即y=ex與y=a-x圖象交點(diǎn)的橫坐標(biāo),方程lnx+x-a=0的根,即y=lnx與y=a-x圖象交點(diǎn)的橫坐標(biāo),而y=ex與y=lnx的圖象關(guān)于直線y=x軸對(duì)稱,如圖所示:
∴x1+x2=a,∴x+x+2x1x2==a2,又a>1,
∴m=x+x+2x1x2>1.
[答案] (1,+∞)
二次函數(shù)的零點(diǎn)問(wèn)題
例3 (1)若函數(shù)f(x)=(m-2)x2+mx+(2m+1)的兩個(gè)零點(diǎn)分別在區(qū)間(-1,0)和區(qū)間(1,2)內(nèi),則m的取值范圍是______________.
[解析]依題意,結(jié)合函數(shù)f( 14、x)的圖象分析可知m需滿足
即
解得 15、點(diǎn)問(wèn)題:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判別式及根與系數(shù)之間的關(guān)系;(3)利用二次函數(shù)的圖象列不等式組.
5.已知二次函數(shù)f(x)=x2+(2a-1)x+1-2a,若y=f(x)在區(qū)間(-1,0)及內(nèi)各有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是____________.
[解析]依題意,要使y=f(x)在區(qū)間(-1,0)及內(nèi)各有一個(gè)零點(diǎn),只需即解得<a<.故實(shí)數(shù)a的取值范圍為.
[答案]
6.已知y=f(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=x2-2x,若方程f(x)=a恰有3個(gè)不同的解,則a的取值范圍是__________.
[解析]設(shè)x< 16、0,則-x>0,所以f(-x)=x2+2x.
又因?yàn)閒(x)是奇函數(shù),
所以f(x)=-f(-x)=-x2-2x.
所以f(x)=
方程f(x)=a恰有3個(gè)不同的解,
即y=f(x)與y=a的圖象有3個(gè)不同的交點(diǎn).
作出y=f(x)與y=a的圖象如圖所示,
故若方程f(x)=a恰有3個(gè)不同的解,只需-1<a<1,
故a的取值范圍為(-1,1).
[答案] (-1,1)
函數(shù)零點(diǎn)的應(yīng)用
例4 (1)(多選)設(shè)函數(shù)f(x)=ex+x-2,g(x)=lnx+x2-3.若實(shí)數(shù)a,b滿足f(a)=0,g(b)=0,則( )
A.g(a)<0B.g(a)>0
C.f(b)< 17、0D.f(b)>0
[解析]因?yàn)楹瘮?shù)f(x)=ex+x-2在R上單調(diào)遞增,且f(0)=1-2<0,f(1)=e-1>0,所以f(a)=0時(shí),a∈(0,1).又g(x)=lnx+x2-3在(0,+∞)上單調(diào)遞增,且g(1)=-2<0,所以g(a)<0.由g(2)=ln2+1>0,所以g(b)=0時(shí),b∈(1,2),又f(1)=e-1>0,所以f(b)>0.
[答案]AD
(2)已知函數(shù)f(x)=lnx-ax2+ax恰有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(-∞,0) B.(0,+∞)
C.(0,1)∪(1,+∞) D.(-∞,0)∪{1}
[解析]由題意,顯然x=1是函數(shù) 18、f(x)的一個(gè)零點(diǎn),取a=-1,則f(x)=lnx+x2-x,f′(x)==>0恒成立.則f(x)僅有一個(gè)零點(diǎn),不符合題意,排除A、D;取a=1,則f(x)=lnx-x2+x,f′(x)==,令f′(x)=0,得x=1,則f(x)在(0,1)上遞增,在(1,+∞)上遞減,f(x)max=f(1)=0,即f(x)僅有一個(gè)零點(diǎn),不符合題意,排除B,故選C.
[答案]C
(3)已知f(x)=x2+kx+|x2-1|,若f(x)在(0,2)上有兩個(gè)不同的零點(diǎn)x1,x2,則k的取值范圍是________.
[解析]不妨設(shè)0 19、故f(x)=0在(0,1]上至多一個(gè)解;
若1 20、__________.
[解析]由方程,解得a=-,
設(shè)t=2x(t>0),則a=-=-
=2-,其中t+1>1,
由基本不等式,得(t+1)+≥2,
當(dāng)且僅當(dāng)t=-1時(shí)取等號(hào),故a≤2-2.
[答案] (-∞,2-2]
8.已知函數(shù)f(x)=ex-x2+2x,g(x)=lnx-+2,h(x)=-x-2,且-1 21、x,y=x2-2x圖象交點(diǎn)橫坐標(biāo);
b是y=lnx,y=-2圖象交點(diǎn)橫坐標(biāo);
c是y=-2,y=x圖象交點(diǎn)橫坐標(biāo);
即a,b,c分別是圖中點(diǎn)A,B,C的橫坐標(biāo),
由圖象可得,a 22、第二段折線無(wú)公共點(diǎn)時(shí),方程恰有5個(gè)實(shí)數(shù)解,將y=mx代入(x-4)2+y2=1得(1+m2)x2-8x+15=0,令Δ=64-60(1+m2)>0,得m2<.又當(dāng)x=6時(shí),6m>1,m>,所以m∈.
[答案]
對(duì)應(yīng)學(xué)生用書(shū)p33
(2018·全國(guó)卷Ⅰ理)已知函數(shù)f(x)=g(x)=f(x)+x+a.若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是( )
A.[-1,0) B.[0,+∞)
C.[-1,+∞) D.[1,+∞)
[解析]函數(shù)g(x)=f(x)+x+a存在2個(gè)零點(diǎn),即關(guān)于x的方程f(x)=-x-a有2個(gè)不同的實(shí)根,即函數(shù)f(x)的圖象與直線y=-x-a有2個(gè)交點(diǎn),作出直線y=-x-a與函數(shù)f(x)的圖象,如圖所示,
由圖可知,-a≤1,解得a≥-1.
[答案]C
12
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- EXCEL基礎(chǔ)教程
- 一個(gè)小村莊的故事 (2)(教育精品)
- 液壓-第5章液壓控制閥(流量控制閥)(6)課件
- 項(xiàng)目6波形發(fā)生電路分析及應(yīng)用教學(xué)課件 中職 高教版 模擬電子技術(shù)基礎(chǔ)與仿真(Multisim10)
- 企業(yè)產(chǎn)權(quán)規(guī)章制度
- 四知、私心(范曄)
- “AMT-Group”管理咨詢案例分析大賽
- 典型零件的數(shù)控銑削加工工藝PPT課件
- 第三單元第八課財(cái)政與稅收ppt課件新人教版必修1圖
- 2022年世界精神衛(wèi)生日營(yíng)造良好環(huán)境-共助心理健康班會(huì)全文PPT
- 南昌(國(guó)際)青年旅舍
- 服務(wù)設(shè)計(jì)培訓(xùn)教程
- 銀行卡營(yíng)銷策劃方案
- 安全生產(chǎn)培訓(xùn)三
- ISO9001標(biāo)準(zhǔn)培訓(xùn)教程