《2019-2020學(xué)年新教材高中數(shù)學(xué) 第五章 三角函數(shù)復(fù)習(xí)課學(xué)案 新人教A版必修第一冊(cè)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020學(xué)年新教材高中數(shù)學(xué) 第五章 三角函數(shù)復(fù)習(xí)課學(xué)案 新人教A版必修第一冊(cè)(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、復(fù)習(xí)課(五) 三角函數(shù)
考點(diǎn)一 三角函數(shù)的概念
設(shè)角α的終邊與單位圓交于點(diǎn)P(x,y),則x=cosα,y=sinα,=tanα.三角函數(shù)的概念是研究三角函數(shù)的基礎(chǔ).
【典例1】 已知角α的終邊在直線(xiàn)3x+4y=0上,求sinα,cosα,tanα的值.
[解] ∵角α的終邊在直線(xiàn)3x+4y=0上,
∴在角α的終邊上任取一點(diǎn)P(4t,-3t)(t≠0),
則x=4t,y=-3t,r==
=5|t|,
當(dāng)t>0時(shí),r=5t,
sinα===-,cosα===,tanα===-;
當(dāng)t<0時(shí),r=-5t,sinα===,
cosα===-,tanα===-.
綜上可知,t>
2、0時(shí),sinα=-,cosα=,tanα=-;
t<0時(shí),sinα=,cosα=-,tanα=-.
(1)已知角α的終邊在直線(xiàn)上時(shí),常用的解題方法有以下兩種:
①先利用直線(xiàn)與單位圓相交,求出交點(diǎn)坐標(biāo),然后再利用正弦、余弦函數(shù)的定義求出相應(yīng)三角函數(shù)值.
②在α的終邊上任選一點(diǎn)P(x,y),P到原點(diǎn)的距離為r(r>0).則sinα=,cosα=.已知α的終邊求α的三角函數(shù)值時(shí),用這幾個(gè)公式更方便.
(2)當(dāng)角α的終邊上點(diǎn)的坐標(biāo)以參數(shù)形式給出時(shí),要根據(jù)問(wèn)題的實(shí)際情況對(duì)參數(shù)進(jìn)行分類(lèi)討論.
[針對(duì)訓(xùn)練]
1.已知角θ的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為x軸的非負(fù)半軸.若P(4,y)是角θ終
3、邊上一點(diǎn),且sinθ=-,則y=_____.
[解析] r==,且sinθ=-,所以sinθ===-,所以θ為第四角限角,解得y=-8.
[答案]?。?
考點(diǎn)二 同角三角函數(shù)的基本關(guān)系式和誘導(dǎo)公式
由三角函數(shù)的概念不難得出同角三角函數(shù)的基本關(guān)系式、誘導(dǎo)公式,這是化簡(jiǎn)求值的基礎(chǔ).
【典例2】 已知f(α)=
.
(1)化簡(jiǎn)f(α);
(2)若f(α)=,且<α<,求cosα-sinα的值;
(3)若α=-,求f(α)的值.
[解] (1)f(α)==sinα·cosα.
(2)由f(α)=sinα·cosα=可知,
(cosα-sinα)2=cos2α-2sinα·cos
4、α+sin2α
=1-2sinα·cosα=1-2×=,
又∵<α<,∴cosα
5、簡(jiǎn)公式.記憶規(guī)律是:奇變偶不變,符號(hào)看象限.
[針對(duì)訓(xùn)練]
2.已知tanθ=2,則sin2θ+sinθcosθ-2cos2θ等于( )
A.- B. C.- D.
[解析] sin2θ+sinθcosθ-2cos2θ
==,
又tanθ=2,故原式==.
[答案] D
3.若sinθ=,則+
的值為_(kāi)_______.
[解析] 原式=+
=+=
===6.
[答案] 6
考點(diǎn)三 三角函數(shù)的圖象與性質(zhì)
函數(shù)y=sinx,y=cosx的圖象可用“五點(diǎn)法”作出,而識(shí)別函數(shù)的圖象可考慮特殊點(diǎn)及三角函數(shù)的性質(zhì),要熟記y=sinx、y=cosx的單調(diào)性,區(qū)分y=si
6、nx及y=tanx的周期及單調(diào)增區(qū)間,以圖助數(shù),數(shù)形結(jié)合.
【典例3】 (1)函數(shù)f(x)=在區(qū)間[-π,π]內(nèi)的大致圖象是下列圖中的( )
(2)若函數(shù)f(x)的定義域?yàn)镽,最小正周期為2π,且滿(mǎn)足f(x)=則f=________.
(3)已知f(x)=sin2x+cosx,x∈,則f(x)的值域?yàn)開(kāi)_______.
[解析] (1)x∈[-π,π]故排除B,D,當(dāng)x∈時(shí),cosx<0,f(x)==-tanx,故選C.
(2)∵T=2π,∴f=f=f=cos(-)=.
(3)f(x)=1-cos2x+cosx=-2+.
∵x∈,∴cosx∈,
∴f(x)∈.
[答案]
7、 (1)C (2) (3)
(1)研究三角函數(shù)的圖象可結(jié)合三角函數(shù)的定義域、值域、單調(diào)區(qū)間、特殊點(diǎn)等研究.
(2)研究三角函數(shù)的奇偶性、單調(diào)性、最值等要注意定義域的限制.
[針對(duì)訓(xùn)練]
4.函數(shù)f(x)=的奇偶性是( )
A.奇函數(shù) B.偶函數(shù)
C.既是奇函數(shù)又偶函數(shù) D.非奇非偶函數(shù)
[解析] 由題意,知sinx≠1,即f(x)的定義域?yàn)?,此函?shù)的定義域不關(guān)于原點(diǎn)對(duì)稱(chēng).∴f(x)是非奇非偶函數(shù).
[答案] D
5.函數(shù)f(x)=logcosx的單調(diào)遞增區(qū)間是___________.
[解析] 由cosx>0得-+2kπ
8、logcosx的單調(diào)遞增區(qū)間即為u=cosx,x∈(k∈Z)的單調(diào)遞減區(qū)間,即2kπ≤x<+2kπ,k∈Z.
故函數(shù)f(x)=logcosx的單調(diào)遞增區(qū)間為(k∈Z).
[答案] (k∈Z)
課后作業(yè)(四十七)
復(fù)習(xí)鞏固
一、選擇題
1.下列函數(shù)中,周期為4π的是( )
A.y=sin4x B.y=cos2x
C.y=tan D.y=sin
[解析] D中:T==4π,故選D.
[答案] D
2.若角600°的終邊上有一點(diǎn)(-4,a),則a的值是( )
A.-4 B.±4
C. D.4
[解析] ∵tan600°==tan(540°+60°)=tan60°=,∴
9、a=-4.
[答案] A
3.若將函數(shù)y=2sin的圖象向右平移個(gè)周期后,所得圖象對(duì)應(yīng)的函數(shù)為( )
A.y=2sin B.y=2sin
C.y=2sin D.y=2sin
[解析] 因?yàn)門(mén)==π,=,
y=2sin,
所以y=2sin.故選D.
[答案] D
4.對(duì)于函數(shù)f(x)=sin2x,下列選項(xiàng)中正確的是( )
A.f(x)在上是遞增的
B.f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)
C.f(x)的最小正周期為2π
D.f(x)的最大值為2
[解析] 因?yàn)閒(-x)=sin(-2x)=-sin2x=-f(x),所以f(x)為奇函數(shù),故f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),選B
10、.
[答案] B
5.函數(shù)y=2sin(x∈[0,π])的單調(diào)遞增區(qū)間是( )
A. B.
C. D.
[解析] y=-2sin,
由+2kπ≤2x-≤π+2kπ(k∈Z),
可得+kπ≤x≤π+kπ(k∈Z),
∵x∈[0,π],∴單調(diào)增區(qū)間為.
[答案] C
二、填空題
6.已知α∈,tanα=2,則cosα=_____________.
[解析] 由tanα==2,sin2α+cos2α=1,聯(lián)立得cos2α=,由α∈知cosα<0,所以cosα=-.
[答案] -
7.函數(shù)y=+的定義域?yàn)開(kāi)_____________.
[解析] 依題意,得
∴
如圖
11、,可得函數(shù)的定義域?yàn)閇-4,-π]∪[0,π].
[答案] [-4,-π]∪[0,π]
8.若f(x)是R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=sinx,則f(x)的解析式是__________________.
[解析] 任取x<0,則-x>0,
∴f(-x)=sin(-x)=-sinx,又f(x)是偶函數(shù),
∴f(-x)=f(x)=-sinx,故有f(x)=
[答案] f(x)=
三、解答題
9.已知tanα=-.
(1)求2+sinαcosα-cos2α的值;
(2)求
的值.
[解] (1)2+sinαcosα-cos2α
=
=
=,
把tanα=-代
12、入,得
原式=
==.
(2)原式=
=
==-=-tanα,
把tanα=-代入,得原式=.
10.用“五點(diǎn)法”作出函數(shù)y=1-2sinx,x∈[-π,π]的簡(jiǎn)圖,并回答下列問(wèn)題:
(1)觀察函數(shù)圖象,寫(xiě)出滿(mǎn)足下列條件的x的區(qū)間.
①y>1;②y<1.
(2)若直線(xiàn)y=a與y=1-2sinx,x∈[-π,π]的圖象有兩個(gè)交點(diǎn),求a的取值范圍.
[解] 列表如下:
x
-π
-
0
π
sinx
0
-1
0
1
0
1-2sinx
1
3
1
-1
1
描點(diǎn)并將它們用光滑的曲線(xiàn)連接起來(lái):
(1)由圖象可知圖象在直線(xiàn)y=1
13、上方部分時(shí)y>1,在直線(xiàn)y=1下方部分時(shí)y<1,
所以①當(dāng)x∈(-π,0)時(shí),y>1;②當(dāng)x∈(0,π)時(shí),y<1.
(2)如圖所示,當(dāng)直線(xiàn)y=a與y=1-2sinx,x∈[-π,π]的圖象有兩個(gè)交點(diǎn)時(shí),1sin4.
所以|sin4-cos4|=cos4-sin4.故選B.
[答案] B
1
14、2.函數(shù)y=lncosx的大致圖象是( )
[解析] ∵lncos=lncos=ln,若函數(shù)y=f(x)在[0,1]上為單調(diào)遞減函數(shù),則下列命題正確的是( )
A.f(cosA)>f(cosB)
B.f(sinA)>f(sinB)
C.f(sinA)>f(cosB)
D.f(sinA),可得0
15、A)>f(cosB),即C正確.
[答案] C
14.對(duì)于函數(shù)f(x)=下列命題中正確的是( )
A.該函數(shù)的值域是[-1,1]
B.當(dāng)且僅當(dāng)x=2kπ+(k∈Z)時(shí),函數(shù)取得最大值1
C.當(dāng)且僅當(dāng)x=2kπ-(k∈Z)時(shí),函數(shù)取得最小值-1
D.當(dāng)且僅當(dāng)2kπ+π1,即a>2時(shí),g(a)=-4a+1.
∴g(a)=
(2)g(a)=,則a=-1.
∴f(x)=22+,∴f(x)max=5.
11