影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 專題突破二 焦點弦的性質(zhì)學(xué)案(含解析)新人教B版選修2-1

上傳人:彩*** 文檔編號:107103806 上傳時間:2022-06-14 格式:DOCX 頁數(shù):16 大?。?.34MB
收藏 版權(quán)申訴 舉報 下載
2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 專題突破二 焦點弦的性質(zhì)學(xué)案(含解析)新人教B版選修2-1_第1頁
第1頁 / 共16頁
2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 專題突破二 焦點弦的性質(zhì)學(xué)案(含解析)新人教B版選修2-1_第2頁
第2頁 / 共16頁
2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 專題突破二 焦點弦的性質(zhì)學(xué)案(含解析)新人教B版選修2-1_第3頁
第3頁 / 共16頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 專題突破二 焦點弦的性質(zhì)學(xué)案(含解析)新人教B版選修2-1》由會員分享,可在線閱讀,更多相關(guān)《2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 專題突破二 焦點弦的性質(zhì)學(xué)案(含解析)新人教B版選修2-1(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題突破二 焦點弦的性質(zhì) 拋物線的焦點弦是考試的熱點,有關(guān)拋物線的焦點弦性質(zhì)較為豐富,對拋物線焦點弦性質(zhì)進行研究獲得一些重要結(jié)論,往往能給解題帶來新思路,有利于解題過程的優(yōu)化. 一、焦點弦性質(zhì)的推導(dǎo) 例1 拋物線y2=2px(p>0),設(shè)AB是拋物線的過焦點的一條弦(焦點弦),F(xiàn)是拋物線的焦點,A(x1,y1),B(x2,y2)(y1>0,y2<0),A,B在準線上的射影為A1,B1. 證明:(1)x1x2=,y1y2=-p2; (2)若直線AB的傾斜角為θ,則|AF|=,|BF|=; (3)|AB|=x1+x2+p=(其中θ為直線AB的傾斜角),拋物線的通徑長為2p,通徑是最短的

2、焦點弦; (4)+=為定值; (5)S△OAB=(θ為直線AB的傾斜角); (6)以AB為直徑的圓與拋物線的準線相切; (7)A,O,B1三點共線,B,O,A1三點也共線. 考點 拋物線中過焦點的弦長問題 題點 與弦長有關(guān)的其它問題 證明 (1)①當(dāng)AB⊥x軸時, 不妨設(shè)A,B, ∴y1y2=-p2,x1x2=. ②當(dāng)AB的斜率存在時,設(shè)為k(k≠0), 則直線AB的方程為y=k, 代入拋物線方程y2=2px, 消元得y2=2p, 即y2--p2=0, ∴y1y2=-p2,x1x2=. (2)當(dāng)θ≠90°時,過A作AG⊥x軸,交x軸于G, 由拋物線定義知|AF

3、|=|AA1|, 在Rt△AFG中,|FG|=|AF|cosθ, 由圖知|GG1|=|AA1|, 則p+|AF|cosθ=|AF|,得|AF|=, 同理得|BF|=; 當(dāng)θ=90°時,可知|AF|=|BF|=p, 對于|AF|=,|BF|=亦成立, ∴|AF|=,|BF|=. (3)|AB|=|AF|+|BF|=x1+x2+p =+=≥2p, 當(dāng)且僅當(dāng)θ=90°時取等號. 故通徑為最短的焦點弦. (4)由(2)可得, +=+=. (5)當(dāng)θ=90°時,S△OAB=×2p×=, 故滿足S△OAB=; 當(dāng)θ≠90°時,設(shè)直線AB:y=tanθ, 原點O到直線A

4、B的距離 d==sinθ, S△OAB=|AB|=sinθ×=. (6)如圖:⊙M的直徑為AB,過圓心M作MM1垂直于準線于點M1, 則|MM1|===, 故以AB為直徑的圓與準線相切. (7)設(shè)直線AB的方程:x=my+, 代入y2=2px得y2-2pmy-p2=0. 由(1)可得y1y2=-p2. 因為BB1∥x軸,∴B1,即B1, ===×==kOA, 所以∥且公共點為O, 所以直線AB1過點O. 所以A,O,B1三點共線, 同理得B,O,A1三點共線. 二、焦點弦性質(zhì)的應(yīng)用 例2 (1)設(shè)F為拋物線C:y2=3x的焦點,過F且傾斜角為30°的直線

5、交C于A,B兩點,O為坐標(biāo)原點,則△OAB的面積為(  ) A.B.C.D. 考點 拋物線中過焦點的弦長問題 題點 與弦長有關(guān)的其它問題 答案 D 解析 方法一 由題意可知,直線AB的方程為 y=, 代入拋物線的方程可得4y2-12y-9=0, 設(shè)A(x1,y1),B(x2,y2), 則y1+y2=3,y1y2=-, 故所求三角形的面積為××=. 方法二 運用焦點弦傾斜角相關(guān)的面積公式, 則S△OAB===. (2)已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1,l2,直線l1與C交于A,B兩點,直線l2與C交于D,E兩點,則|AB|+|DE|的最小

6、值為(  ) A.16B.14C.12D.10 考點 拋物線中過焦點的弦長問題 題點 與弦長有關(guān)的其它問題 答案 A 解析 方法一 拋物線C:y2=4x的焦點為F(1,0), 由題意可知l1,l2的斜率存在且不為0. 不妨設(shè)直線l1的斜率為k, l1:y=k(x-1),l2:y=-(x-1), 由消去y得k2x2-(2k2+4)x+k2=0, 設(shè)A(x1,y1),B(x2,y2), 則x1+x2==2+, 由拋物線的定義可知,|AB|=x1+x2+2=2++2=4+. 同理得|DE|=4+4k2, ∴|AB|+|DE|=4++4+4k2=8+4≥8+8=16, 當(dāng)

7、且僅當(dāng)=k2,即k=±1時取等號, 故|AB|+|DE|的最小值為16. 方法二 運用焦點弦的傾斜角公式,注意到兩條弦互相垂直,設(shè)直線AB的傾斜角為θ,則θ≠且θ≠0, 因此|AB|+|DE|=+ =+==≥16. 當(dāng)且僅當(dāng)θ=或π時,等號成立. 點評 上述兩道題目均是研究拋物線的焦點弦問題,涉及拋物線焦點弦長度與三角形面積,從高考客觀題快速解答的要求來看,常規(guī)解法顯然小題大做了,而利用焦點弦性質(zhì),可以快速解決此類小題. 跟蹤訓(xùn)練 過拋物線y2=2x的焦點F作直線交拋物線于A,B兩點,若|AB|=,|AF|<|BF|,則|AF|=________. 考點 拋物線中過焦點的弦長問

8、題 題點 與弦長有關(guān)的其它問題 答案  解析 由于y2=2x的焦點坐標(biāo)為,由題意知A,B所在直線的斜率存在, 設(shè)A,B所在直線的方程為y=k,A(x1,y1),B(x2,y2),x1

9、過拋物線y2=4x的焦點,與拋物線交于A,B兩點,若|AB|=8,則直線l的方程為(  ) A.y=-x+1 B.y=x-1 C.y=-x+1或y=x-1 D.以上均不對 考點  題點  答案 C 解析 由焦點弦長|AB|=(α為直線AB的傾斜角), ∴8=,sin2α=, 則tanα=±1, 又直線過拋物線焦點, ∴直線l的方程為y=-x+1或y=x-1.故選C. 3.直線l過拋物線y2=-2px(p>0)的焦點,且與該拋物線交于A,B兩點,若線段AB的長是8,AB的中點到y(tǒng)軸的距離是2,則此拋物線的方程是(  ) A.y2=-12x B.y2=-8x C.y2=-

10、6x D.y2=-4x 答案 B 解析 設(shè)A(x1,y1),B(x2,y2),根據(jù)拋物線的定義可知|AB|=-(x1+x2)+p=8. 又AB的中點到y(tǒng)軸的距離為2,∴-=2, ∴x1+x2=-4,∴p=4, ∴所求拋物線的方程為y2=-8x.故選B. 4.過拋物線y2=4x的焦點作直線交拋物線于點A(x1,y1),B(x2,y2),若|AB|=7,則AB的中點M到拋物線準線的距離為________________. 考點  題點  答案  解析 拋物線的焦點為F(1,0),準線方程為x=-1.由拋物線定義知|AB|=|AF|+|BF|=x1+x2+p,即x1+x2+2=7

11、,得x1+x2=5,于是弦AB的中點M的橫坐標(biāo)為,又準線方程為x=-1,因此點M到拋物線準線的距離為+1=. 5.過拋物線焦點F的直線與拋物線相交于A,B兩點,若點A,B在拋物線準線上的射影分別為A1,B1,則∠A1FB1為________. 考點  題點  答案 90° 解析 設(shè)拋物線方程為y2=2px(p>0),如圖. ∵|AF|=|AA1|,|BF|=|BB1|, ∴∠AA1F=∠AFA1,∠BFB1=∠FB1B. 又AA1∥Ox∥B1B, ∴∠A1FO=∠FA1A,∠B1FO=∠FB1B, ∴∠A1FB1=∠AFB=90°. 一、選擇題 1.已知AB是過

12、拋物線y=2x2的焦點的弦,若|AB|=4,則AB的中點的縱坐標(biāo)是(  ) A.1B.2C.D. 考點 拋物線中過焦點的弦長問題 題點 與弦長有關(guān)的其它問題 答案 D 解析 如圖所示,設(shè)AB的中點為P(x0,y0),分別過A,P,B三點作準線l的垂線,垂足分別為A′,Q,B′, 由題意得|AA′|+|BB′|=|AB|=4,|PQ|==2, 又|PQ|=y(tǒng)0+,∴y0+=2,∴y0=. 2.若拋物線y2=2px(p>0)上三個點的縱坐標(biāo)的平方成等差數(shù)列,那么這三個點到拋物線焦點F的距離的關(guān)系是(  ) A.成等差數(shù)列 B.既成等差數(shù)列又成等比數(shù)列 C.成等比數(shù)列 D

13、.既不成等比數(shù)列也不成等差數(shù)列 考點  題點  答案 A 解析 設(shè)三點為P1(x1,y1),P2(x2,y2),P3(x3,y3), 則y=2px1,y=2px2,y=2px3, 因為2y=y(tǒng)+y, 所以x1+x3=2x2, 即|P1F|-+|P3F|-=2, 所以|P1F|+|P3F|=2|P2F|. 3.拋物線x2=4y的焦點為F,過點F作斜率為的直線l與拋物線在y軸右側(cè)的部分相交于點A,過點A作拋物線準線的垂線,垂足為H,則△AHF的面積是(  ) A.4B.3C.4D.8 答案 C 解析 由拋物線的定義可得|AF|=|AH|,∵AF的斜率為,∴AF的傾斜角為3

14、0°,∵AH垂直于準線, ∴∠FAH=60°,故△AHF為等邊三角形.設(shè)A,m>0,過F作FM⊥AH于M,則在△FAM中,|AM|=|AF|,∴-1=,解得m=2,故等邊三角形AHF的邊長|AH|=4,∴△AHF的面積是×4×4sin60°=4.故選C. 4.過拋物線y2=2px(p>0)的焦點F作傾斜角為60°的直線l交拋物線于A,B兩點,且|AF|>|BF|,則的值為(  ) A.3B.2C.D. 考點 拋物線中過焦點的弦長問題 題點 與弦長有關(guān)的其它問題 答案 A 解析 由拋物線的性質(zhì)可知, |AF|=,|BF|=, ∴==3. 5.已知拋物線y2=4x的焦點為F,過

15、焦點F的直線與拋物線交于點A(x1,y1),B(x2,y2),則y+y的最小值為(  ) A.4B.6C.8D.10 考點 拋物線中過焦點的弦長問題 題點 與弦長有關(guān)的其它問題 答案 C 解析 由焦點弦的性質(zhì)知, y1y2=-4,即|y1|·|y2|=4, 則y+y≥2|y1|·|y2|=8, 當(dāng)且僅當(dāng)|y1|=|y2|=2時,取等號. 故y+y的最小值為8. 6.過拋物線y2=4x的焦點F的直線交拋物線于A,B兩點,點O是坐標(biāo)原點,則|AF|·|BF|的最小值是(  ) A.2B.C.4D.2 答案 C 解析 設(shè)直線AB的傾斜角為θ,可得|AF|=,|BF|=,則|

16、AF|·|BF|=×=≥4. 7.如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A,B,交其準線于點C,若|BC|=3|BF|,且|AF|=4,則p的值為(  ) A. B.2 C. D. 考點 拋物線中過焦點的弦長問題 題點 與弦長有關(guān)的其它問題 答案 C 解析 設(shè)直線l的傾斜角為θ, 由焦點弦的性質(zhì)知,|BF|=,|AF|=, ∴解得 8.設(shè)拋物線C:y2=4x的焦點為F,直線l過F且與C交于A,B兩點.若|AF|=3|BF|,則l的方程為(  ) A.y=x-1或y=-x+1 B.y=(x-1)或y=-(x-1) C.y=(x-1)或y=-

17、(x-1) D.y=(x-1)或y=-(x-1) 考點 拋物線中過焦點的弦長問題 題點 與弦長有關(guān)的其它問題 答案 C 解析 當(dāng)cosθ>0時,|AF|=,|BF|=. 由|AF|=3|BF|,∴=, 即cosθ=,此時tanθ=, 當(dāng)cosθ<0時,|AF|=,|BF|=, 由|AF|=3|BF|,∴=, 即cosθ=-,此時tanθ=-,故選C. 9.直線l過拋物線C:y2=4x的焦點F,交拋物線C于A,B兩點,則+的取值范圍為(  ) A.{1} B.(0,1] C.[1,+∞) D. 考點  題點  答案 A 解析 易知焦點F(1,0),準線方程為

18、x=-1. 當(dāng)直線l的斜率存在時,設(shè)為k, 則直線l的方程為y=k(x-1), 代入拋物線方程,得k2(x-1)2=4x. 化簡為k2x2-(2k2+4)x+k2=0. 設(shè)A(x1,y1),B(x2,y2),則有x1x2=1, 根據(jù)拋物線性質(zhì)可知,|AF|=x1+1,|BF|=x2+1, ∴+=+ ==1. 當(dāng)直線l的斜率不存在時, 則直線l:x=1,此時|BF|=|AF|=2, ∴+=1, 綜上,+=1. 10.如圖,過拋物線x2=4y焦點的直線依次交拋物線和圓x2+(y-1)2=1于點A,B,C,D,則|AB|·|CD|的值是(  ) A.8 B.4 C.

19、2 D.1 考點  題點  答案 D 解析 易知,直線斜率存在,設(shè)為k, 由得y2-(4k2+2)y+1=0, ∵|AB|=|AF|-1=y(tǒng)A,|CD|=|DF|-1=y(tǒng)D, ∴|AB|·|CD|=y(tǒng)AyD=1. 二、填空題 11.一條直線過點,且與拋物線y2=x交于A,B兩點.若|AB|=4,則弦AB的中點到直線x+=0的距離等于________. 考點  題點  答案  解析 ∵拋物線y2=x的焦點坐標(biāo)為,準線方程為x=-, ∴直線AB為過焦點的直線, ∴AB的中點到準線的距離==2, ∴弦AB的中點到直線x+=0的距離等于2+=. 12.過拋物線y2=4

20、x的焦點F的直線交該拋物線于A,B兩點,O為坐標(biāo)原點.若|AF|=3,則△AOB的面積為________. 考點  題點  答案  解析 由題意知拋物線y2=4x的焦點為F(1,0),準線方程為l:x=-1,可得A點的橫坐標(biāo)為2,不妨設(shè)A(2,2),則直線AB的方程為y=2(x-1),與y2=4x聯(lián)立,得2x2-5x+2=0,可得B,所以S△AOB=S△AOF+S△BOF=×1×|yA-yB|=. 13.設(shè)F為拋物線y2=4x的焦點,A,B,C為該拋物線上三點,若++=0,則||+||+||=________. 考點 拋物線中過焦點的弦長問題 題點 與弦長有關(guān)的其它問題 答案 

21、6 解析 設(shè)A(x1,y1),B(x2,y2),C(x3,y3),又F(1,0). 由++=0知(x1-1)+(x2-1)+(x3-1)=0, 即x1+x2+x3=3, ||+||+||=x1+x2+x3+p=6. 三、解答題 14.如圖,拋物線的頂點在坐標(biāo)原點,圓x2+y2=4x的圓心是拋物線的焦點,直線l過拋物線的焦點且斜率為2,直線l交拋物線和圓依次于A,B,C,D四點. (1)求拋物線的方程; (2)求|AB|+|CD|的值. 考點  題點  解 (1)由圓的方程x2+y2=4x,即(x-2)2+y2=4, 可知圓心為F(2,0),半徑為2, 又由拋物線的

22、焦點為已知圓的圓心,得到拋物線焦點為F(2,0), 故拋物線方程為y2=8x. (2)|AB|+|CD|=|AD|-|BC|, ∵|BC|為已知圓的直徑,∴|BC|=4, 則|AB|+|CD|=|AD|-4, 設(shè)A(x1,y1),B(x2,y2), ∵|AD|=|AF|+|FD|,而A,D在拋物線上, 由已知可知直線l的方程為y=2(x-2), 由消去y, 得x2-6x+4=0,∴x1+x2=6, ∴|AD|=6+4=10, 因此|AB|+|CD|=10-4=6. 15.已知M為拋物線y2=2px(p>0)上一動點,A(a,0)(a>0)為其對稱軸上一點,直線MA與

23、拋物線的另一個交點為N.當(dāng)A為拋物線的焦點且直線MA與其對稱軸垂直時,△OMN的面積為. (1)求拋物線的標(biāo)準方程; (2)記t=+,若t的值與M點位置無關(guān),則稱此時的點A為“穩(wěn)定點”,試求出所有“穩(wěn)定點”,若沒有,請說明理由. 考點  題點  解 (1)由題意知,當(dāng)直線MA與拋物線對稱軸垂直時, S△MON=|OA||MN|=××2p==, ∴p=3, 故拋物線C的標(biāo)準方程為y2=6x. (2)設(shè)M(x1,y1),N(x2,y2), 直線MN的方程為x=my+a, 聯(lián)立得y2-6my-6a=0, 所以Δ=36m2+24a>0, y1+y2=6m,y1y2=-6a, 由對稱性,不妨設(shè)m>0, 因為a>0,所以y1y2=-6a<0, 所以y1,y2異號, 又t=+=+ = t2=· =· =· =. 所以,當(dāng)且僅當(dāng)-1=0即a=時,t與m無關(guān),A為穩(wěn)定點. 16

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!