《2018年高考全國一卷理科數(shù)學(xué)答案及解析》由會員分享,可在線閱讀,更多相關(guān)《2018年高考全國一卷理科數(shù)學(xué)答案及解析(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2018年普通高等學(xué)招生全國統(tǒng)一考試(全國一卷)理科數(shù)學(xué)
參考答案與解析
一、選擇題:本題有12小題,每小題5分,共60分。
1、設(shè)z=,則|z|=
A、0
B、
C、1
D、
【答案】C
【解析】由題可得,所以|z|=1
【考點定位】復(fù)數(shù)
2、已知集合A={x|x2-x-2>0},則A=
A、{x|-1
2}
D、{x|x-1}∪{x|x2}
【答案】B
【解析】由題可得CRA={x|x2-x-2≤0},所以{x|-1x2}
【考點定位】集合
3、某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟收入增加了一倍,實現(xiàn)翻番,為更好地了解該地區(qū)農(nóng)村的經(jīng)濟收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟收入構(gòu)成比例,得到如下餅圖:
則下面結(jié)論中不正確的是:
A、新農(nóng)村建設(shè)后,種植收入減少。
B、新農(nóng)村建設(shè)后,其他收入增加了一倍以上。
C、新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍。
D、新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟收入的一半。
【答案】A
【解析】由題可得新農(nóng)村建設(shè)后,種植收入37%*200%=74%>60%,
【考點定位】簡單統(tǒng)計
4、記Sn為等差數(shù)列{an}的前n項和,若3S3=S2+S4,a1=2,則a5=
A、-12
B、-10
C、10
D、12
【答案】B
【解析】3*(a1+a1+d+a1+2d)=( a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:
2d+3a1=0 ; d=-3 ∴a5=2+(5-1)*(-3)=-10
【考點定位】等差數(shù)列 求和
5、設(shè)函數(shù)f(x)=x3+(a-1)x2+ax,若f(x)為奇函數(shù),則曲線y=f(x)在點(0,0)處的切線方程為:
A、y=-2x
B、y=-x
C、y=2x
D、y=x
【答案】D
【解析】f(x)為奇函數(shù),有f(x)+f(-x)=0整理得:
f(x)+f(-x)=2*(a-1)x2=0 ∴a=1
f(x)=x3+x
求導(dǎo)f‘(x)=3x2+1
f‘(0)=1 所以選D
【考點定位】函數(shù)性質(zhì):奇偶性;函數(shù)的導(dǎo)數(shù)
6、在ABC中,AD為BC邊上的中線,E為AD的中點,則=
A、--
B、--
C、-+
D、-
【答案】A
【解析】AD為BC邊∴上的中線 AD=
E為AD的中點∴AE=
EB=AB-AE=
【考點定位】向量的加減法、線段的中點
7、某圓柱的高為2,底面周長為16,其三視圖如右圖,圓柱表面上的點M在正視圖上的對應(yīng)點為11A,圓柱表面上的點N在左視圖上的對應(yīng)點為B,則在此圓柱側(cè)面上,從M到N的路徑中,最短路徑的長度為
A、
B、
C、3
D、2
【答案】B
A
A
【解析】將圓柱體的側(cè)面從A點展開:注意到B點在圓周處。
B
∴最短路徑的長度為AB=22+42
【考點定位】立體幾何:圓柱體的展開圖形,最短路徑
8.設(shè)拋物線C:y=4x的焦點為F,過點(-2,0)且斜率為的直線與C交于M,N兩點,則=
A.5
B.6
C.7
D.8
【答案】D
【解析】
拋物線C:y=4x的焦點為F(1,0)
直線MN的方程:
消去x整理得:y2-6y+8=0 ∴y=2 或y=4
M、N 的坐標(biāo)(1,2),(4,4)
則=(0,2)(3,4)=0*3+2*4=8
【考點定位】拋物線焦點 向量的數(shù)量積
如果消去X,計算量會比較大一些,您不妨試試。
9.已知函數(shù)f(x)=g(x)=f(x)+x+a,若g(x)存在2個零點,則a的取值范圍是
A. [-1,0)
B. [0,+∞)
C. [-1,+∞)
D. [1,+∞)
【答案】C
【解析】
根據(jù)題意:f(x)+x+a=0 有兩個解。令M(x)=-a,
N(x)=f(x)+x =ex+x x≤0lnx+x x>0
分段求導(dǎo):N‘(x)=f(x)+x =ex+1>0 x≤01x+1>0 x>0 說明分段是增函數(shù)。考慮極限位置,圖形如下:
M(x)=-a 在區(qū)間(-∞,+1]上有2個交點。
∴a的取值范圍是C. [-1,+∞)
【考點定位】分段函數(shù)、函數(shù)的導(dǎo)數(shù)、分離參數(shù)法
10.下圖來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形。此圖由三個半圓構(gòu)成,三個半圓的直徑分別為。直角三角形ABC的斜邊BC,直角邊AB,AC. △ABC的三邊所圍成的區(qū)域記為Ⅰ,黑色部分記為Ⅱ,其余部分記為Ⅲ。在整個圖形中隨機取一點,此點取自Ⅰ,Ⅱ,Ⅲ的概率分別記為p1,p2,p3,則
A. p1=p2
B. p1=p3
C. p2=p3
D. p1=p2+p3
【答案】A
【解析】
整個區(qū)域的面積: S1+S半圓BC= S半圓AB+ S半圓AC+S△ABC
根據(jù)勾股定理,容易推出S半圓BC= S半圓AB+ S半圓AC
∴S1= S△ABC 故選A
【考點定位】古典概率、 不規(guī)則圖形面積
11.已知雙曲線C: -y=1,O為坐標(biāo)原點,F(xiàn)為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M,N. 若△OMN為直角三角形,則∣MN∣=
A.
B.3
C.
D.4
M
F
N
o
【答案】B
【解析】
右焦點,OF=3+1==2,
漸近線方程y=33x ∴∠NOF=∠MOF =30
在Rt△OMF中,OM=OF*cos∠MOF=2*cos=303
在Rt△OMN中,MN=OM*tan∠NOM=3*tan(30+30)=3
【考點定位】雙曲線漸近線、焦點
概念清晰了,秒殺!有時簡單的“解三角”也行,甚至雙曲線都不用畫出來。 如果用解方程,計算量很大。
12.已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為
A.
B.
C.
D.
【答案】A
【解析】
如圖平面α截正方體所得截面為正六邊形,此時,截面面積最大,其中邊長GH=22
截面面積S=634(22)2=
【考點定位】立體幾何 截面
【盤外招】交并集理論:ABD交集為3,AC交集為 34,選A
二、填空題:本題共4小題,每小題5分,共20分。
13.若x,y滿足約束條件則z=3x+2y的最大值為 .
【答案】6
【解析】
當(dāng)直線z=3x+2y經(jīng)過點(2,0)時,Zmax=3*2+0=6
【考點定位】線性規(guī)劃(頂點代入法)
14.記Sn為數(shù)列{an}的前n項和.若Sn=2an+1,則S6= .
【答案】-63
【解析】
S1=2a1+1=a1 ∴a1=-1
n>1時,Sn=2an+1,Sn-1=2an-1+1 兩式相減:Sn-Sn-1= an=2an-2an-1 ∴an=2an-1
an=a12n-1= (-1)2n-1
∴S6=(-1)(26-1)=-63
【考點定位】等比數(shù)列的求和
15.從2位女生,4位男生中選3人參加科技比賽,且至少有1位女生入選,則不同的選法共有 種.(用數(shù)字填寫答案)
【答案】16
【解析】
C21C42+C22C41=26+14=16
【考點定位】排列組合
16.已知函數(shù)f(x)=2sinx+sin2x,則f(x)的最小值是 .
【答案】-332
【解析】
f(x)=2sinx+sin2x=2sinx+2sinxcosx=2sinx(1+cosx)
考慮到f(x)為奇函數(shù),可以求f(x)最大值.將f(x)平方:
f2(x)=4sin2x(1+cosx)2=4(1-cosx)(1+cosx)3=4/3(3-3cosx)(1+cosx)3≧(4/3)((3-3cosx)+3(1+cosx))/4)4= ()4=
當(dāng)3-3cosx=1+cosx 即cosx=12時,f2(x)取最大值
f(x)min=-332
【考點定位】三角函數(shù)的極值,基本不等式的應(yīng)用
【其他解法】:1.求導(dǎo)數(shù)解答
?。玻甪(x)=2sinx(1+cosx)看成單位圓中一個三角形面積求解。
三.解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。第17~21題為必考題,每個試題考生都必須作答。第22、23題為選考題,考生根據(jù)要求作答。
(一)必考題:共60分。
17.(12分)
在平面四邊形ABCD中,∠ADC=90,∠A=45,AB=2,BD=5.
(1)求cos∠ADB;
(2)若DC=,求BC.
【答案】
【解析】(1)在△ABD中,由正弦定理得BDsin∠A=ABsin∠ADB
∴sin∠ADB =ABsin∠ADB/BD=25
由題設(shè)可知,∠ADB<90∴ cos∠ADB=1-225=235
(2)由題設(shè)及(1)可知cos∠BDC= sin∠ADB =25
在△BCD中,由余弦定理得
BC2=BD2+DC2-2BDDCcos∠BDC
=25+8-2525=25
∴BC=5
【考點定位】正弦定理 余弦定理
18.(12分)
如圖,四邊形ABCD為正方形,E,F(xiàn)分別為AD,BC的中點,以DF為折痕把?DFC折起,使點C到達點P的位置,且PF⊥BF.
(1)證明:平面PEF⊥平面ABFD;
(2)求DP與平面ABFD所成角的正弦值.
【答案】
【解析】(1)由已知可得PF⊥BF ,BF⊥EF ∴BF⊥平面PEF
又BF在平面ABFD上 ∴平面PEF⊥平面ABFD
(2) PH⊥EF,垂足為H,由(1)可得,PH⊥平面ABFD ∴DP與平面ABFD所成角就是∠PDH.
CD2=PD2=DH2+PH2=DE2+EH2+PH2= DE2+(EF-HF)2+PH2
CF2=PF2=HF2+PH2
設(shè)正方形ABCD的邊長為2.上面兩個等式即是:
22=12+(2-HF)2+PH2
12=HF2+PH2
∴解方程得HF=12 PH=32
在Rt△PHD中, sin∠PDH=PH/PD=32/2=34.
【考點定位】立體幾何 點、直線、面的關(guān)系
19.(12分)
設(shè)橢圓C: +y=1的右焦點為F,過F的直線l與C交于A,B兩點,點M的坐標(biāo)為(2,0).
(1)當(dāng)l與x軸垂直時,求直線AM的方程;
(2)設(shè)O為坐標(biāo)原點,證明:∠OMA=∠OMB.
【答案】
【解析】(1)由已知可得F(1,0) ,直線l的方程為x=1
由已知可得, 點A的坐標(biāo)為(1,22)或(1,— 22)
∴直線AM的方程為y=— 22x+2 或 y= 22x—2
(2)當(dāng)l與x軸重合,.∠OMA=∠OMB=00
當(dāng)l與x軸垂直,OM為AB的垂直平分線,所以∠OMA=∠OMB
當(dāng)l與x軸不重合且不垂直,設(shè)直線l的方程為y=k(x-1) (k≠0)
點A(x1,y1), B(x2,y2) ,x1<2,X2<2, 則直線MA、MB的斜率之和
KMA+KMB=y1x1-2+y2x2-2=k(x1-1)x1-2+k(x2-1)x2-2=2kx1x2-3kx1+x2+4k(x1-2)(x2-2)
將y=k(x-1)代入橢圓C的方程得:(2k2+1)x2-4k2x+(2k2-2)=0
x1∴+x2=4k22k2+1,x1x2=2k2-22k2+1
2kx1x2-3kx1+x2+4k=4k3-4k-12k3+8k3+4k2k2+1=0
從而 KMA+KMB=0 MA、MB的傾斜角互補,∴∠OMA=∠OMB
綜上所述,∠OMA=∠OMB
【考點定位】圓錐曲線
20、(12分)
某工廠的某、種、產(chǎn)品成箱包裝,每箱200件,每一箱產(chǎn)品在交付用戶之前要對產(chǎn)品作檢驗,如檢驗出不合格品,則更換為合格品,檢驗時,先從這箱產(chǎn)品中任取20件產(chǎn)品作檢驗,再根據(jù)檢驗結(jié)果決定是否對余下的所有產(chǎn)品做檢驗,設(shè)每件產(chǎn)品為不合格品的k概率都為P(0400, ∴應(yīng)該對這箱余下的所有產(chǎn)品作檢驗。
【考點定位】隨機變量及分布:二項分布最值(基本不等式)、數(shù)學(xué)期望
21、(12分)
已知函數(shù).
(1)討論的單調(diào)性;
(2)若存在兩個極值點, ,證明: .
【答案】
【解析】(1)f(x)的定義域為(0,+∞)
f’(x)=-1x2-1+ax=-x2-ax+1x2
△=a2-4
(i)若a≤2,則f’(x)≤0,當(dāng)且僅當(dāng)a=2,x=1時f’(x)=0,∴f(x)在(0,+∞)單調(diào)遞減。
(i)若a>2,令f’(x)=0得到,x=aa2-42
當(dāng)x∈(0,a-a2-42)∪(a+a2-42,+∞)時,f’(x)<0
當(dāng)x∈(a-a2-42,a+a2-42)時,f’(x)>0
∴f(x)在x∈(0,a-a2-42),(a+a2-42,+∞)單調(diào)遞減, 在(a-a2-42,a+a2-42)單調(diào)遞增。
(2)由(1)可得f(x)存在2個極值點當(dāng)且僅當(dāng)a>2
由于f(x)的極值點x1,x2滿足x2-ax+1=0 所以x1x2=1 不妨設(shè)x11 由于
fx1-f(x2)x1-x2=1x1x2-1+alnx1-Lnx2x1-x2=-2+alnx1-Lnx2x1-x2=-2+a-2Lnx21/x2-x2
等價于1x2-x2+2lnx2<0
設(shè)g(x)= 1x-x+2lnx 由(1)可知g(x)在(0,+∞)單調(diào)遞減,又g(1)=0,從而當(dāng)x∈(1,+∞)時g(x)<0
∴1x2-x2+2lnx2<0 即
【考點定位】函數(shù)導(dǎo)數(shù)的應(yīng)用
(二)選考題:共10分。請考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計分。
22. [選修4-4:坐標(biāo)系與參數(shù)方程]、(10分)
在直角坐標(biāo)系xOy中,曲線C?的方程為y=k∣x∣+2.以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C?的極坐標(biāo)方程為p+2p-3=0.
(1) 求C?的直角坐標(biāo)方程:
(2) 若C?與C?有且僅有三個公共點,求C?的方程.
【答案】
【解析】(1)由x=cosθ,y=sinθ得到C?的直角坐標(biāo)方程:
x2+y2+2x-3=0 即(x+1)2+y2=4
(2)由(1)可知C2是圓心為A(-1,0),半徑為2的圓。
由題設(shè)可知,C1是過點B(0,2)且關(guān)于Y軸對稱的兩條射線,且
C1:=kx+2 x>0-kx+2 x≤0
顯然,K=0時,C1與C2相切,只有一個交點。
K>0時,C1與C2沒有交點。
∴C1與C2有且僅有三個交點,則必須滿足K<0且y=kx+2(x>0) 與C2相切,圓心到射線的距離d= |-k+2|k2+1=2 故K=-4/3或K=0.
經(jīng)檢驗,因為K<0,所以K=-4/3。
綜上所述,所求 C?的方程y=-43∣x∣+2.
【考點定位】極坐標(biāo)與參數(shù)方程 直線與圓的關(guān)系
23. [選修4-5:不等式選講](10分)
已知f(x)=∣x+1∣-∣ax-1∣.
(1) 當(dāng)a=1時, 求不等式f(x)﹥1的解集;
(2) 當(dāng)x∈(0,1)時不等式f(x)﹥x成立,求a的取值范圍.
【答案】
【解析】(1)當(dāng)a=1時, f(x)=∣x+1∣-∣x-1∣=-2 x≤-12x -11
∴不等式f(x)﹥1的解集為{x|x>12}
(2) 當(dāng)x∈(0,1)時不等式f(x)=∣x+1∣-∣ax-1∣﹥x成立,等價于∣ax-1∣<1成立
若a≤0,當(dāng)x∈(0,1)時∣ax-1∣≧1
若a>0,當(dāng)x∈(0,1)時∣ax-1∣<1的解集為0=1 故0
下載提示(請認(rèn)真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
15
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
2018
年高
全國
一卷
理科
數(shù)學(xué)
答案
解析
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.820124.com/p-10751068.html