2020年普通高等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)試題 文(北京卷含解析)(1)
《2020年普通高等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)試題 文(北京卷含解析)(1)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020年普通高等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)試題 文(北京卷含解析)(1)(17頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2020年普通高等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)試題 文(北京卷) 本試卷共5頁(yè),150分??荚嚂r(shí)長(zhǎng)120分鐘??忌鷦?wù)必將答案答在答題卡上,在試卷上作答無(wú)效??荚嚱Y(jié)束后,將本試卷和答題卡一并交回。 第一部分(選擇題 共40分) 一、選擇題共8小題,每小題5分,共40分。在每小題列出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng)。 1. 已知集合A={(𝑥||𝑥|<2)},B={?2,0,1,2},則 A. {0,1} B. {?1,0,1} C. {?2,0,1,2} D. {?1,0,1,2} 【答案】A 【解析】分析:將集合化成最簡(jiǎn)形式,再
2、進(jìn)行求交集運(yùn)算. 詳解: 故選A. 點(diǎn)睛:此題考查集合的運(yùn)算,屬于送分題. 2. 在復(fù)平面內(nèi),復(fù)數(shù)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】D 【解析】分析:將復(fù)數(shù)化為最簡(jiǎn)形式,求其共軛復(fù)數(shù),找到共軛復(fù)數(shù)在復(fù)平面的對(duì)應(yīng)點(diǎn),判斷其所在象限. 詳解:的共軛復(fù)數(shù)為 對(duì)應(yīng)點(diǎn)為,在第四象限,故選D. 點(diǎn)睛:此題考查復(fù)數(shù)的四則運(yùn)算,屬于送分題,解題時(shí)注意審清題意,切勿不可因簡(jiǎn)單導(dǎo)致馬虎丟分. 3. 執(zhí)行如圖所示的程序框圖,輸出的s值為 A. B. C. D. 【答案】B 【解
3、析】分析:初始化數(shù)值,執(zhí)行循環(huán)結(jié)構(gòu),判斷條件是否成立, 詳解:初始化數(shù)值 循環(huán)結(jié)果執(zhí)行如下: 第一次:不成立; 第二次:成立, 循環(huán)結(jié)束,輸出, 故選B. 點(diǎn)睛:此題考查循環(huán)結(jié)構(gòu)型程序框圖,解決此類問(wèn)題的關(guān)鍵在于:第一,要確定是利用當(dāng)型還是直到型循環(huán)結(jié)構(gòu);第二,要準(zhǔn)確表示累計(jì)變量;第三,要注意從哪一步開(kāi)始循環(huán),弄清進(jìn)入或終止的循環(huán)條件、循環(huán)次數(shù). 4. 設(shè)a,b,c,d是非零實(shí)數(shù),則“ad=bc”是“a,b,c,d成等比數(shù)列”的 A. 充分而不必要條件 B. 必要而不充分條件 C. 充分必要條件 D. 既不充分也不必要條件 【答案】B 【解析】分析:證明“”
4、“成等比數(shù)列”只需舉出反例即可,論證“成等比數(shù)列”“”可利用等比數(shù)列的性質(zhì). 詳解:當(dāng)時(shí),不成等比數(shù)列,所以不是充分條件; 當(dāng)成等比數(shù)列時(shí),則,所以是必要條件. 綜上所述,“”是“成等比數(shù)列”的必要不充分條件 故選B. 點(diǎn)睛:此題主要考查充分必要條件,實(shí)質(zhì)是判斷命題“”以及“”的真假.判斷一個(gè)命題為真命題,要給出理論依據(jù)、推理證明;判斷一個(gè)命題為假命題,只需舉出反例即可,或者當(dāng)一個(gè)命題正面很難判斷真假時(shí),可利用原命題與逆否命題同真同假的特點(diǎn)轉(zhuǎn)化問(wèn)題. 5. “十二平均律” 是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純
5、八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于.若第一個(gè)單音的頻率f,則第八個(gè)單音頻率為 A. B. C. D. 【答案】D 【解析】分析:根據(jù)等比數(shù)列的定義可知每一個(gè)單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解. 詳解:因?yàn)槊恳粋€(gè)單音與前一個(gè)單音頻率比為, 所以, 又,則 故選D. 點(diǎn)睛:此題考查等比數(shù)列的實(shí)際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列. 等比數(shù)列的判斷方法主要有如下兩種: (1)定義法,若()或(), 數(shù)列是等比數(shù)列; (2)等比中項(xiàng)公式法,若數(shù)列中,且(),則數(shù)列是等
6、比數(shù)列. 6. 某四棱錐的三視圖如圖所示,在此四棱錐的側(cè)面中,直角三角形的個(gè)數(shù)為 A. 1 B. 2 C. 3 D. 4 【答案】C 【解析】分析:根據(jù)三視圖還原幾何體,利用勾股定理求出棱長(zhǎng),再利用勾股定理逆定理判斷直角三角形的個(gè)數(shù). 詳解:由三視圖可得四棱錐, 在四棱錐中,, 由勾股定理可知:, 則在四棱錐中,直角三角形有:共三個(gè), 故選C. 點(diǎn)睛:此題考查三視圖相關(guān)知識(shí),解題時(shí)可將簡(jiǎn)單幾何體放在正方體或長(zhǎng)方體中進(jìn)行還原,分析線面、線線垂直關(guān)系,利用勾股定理求出每條棱長(zhǎng),進(jìn)而可進(jìn)行棱長(zhǎng)、表面積、體積等相關(guān)問(wèn)題的求解. 7. 在平面坐標(biāo)系中,是圓上的
7、四段?。ㄈ鐖D),點(diǎn)P在其中一段上,角以O(shè)𝑥為始邊,OP為終邊,若,則P所在的圓弧是 A. B. C. D. 【答案】C 【解析】分析:逐個(gè)分析A、B、C、D四個(gè)選項(xiàng),利用三角函數(shù)的三角函數(shù)線可得正確結(jié)論. 詳解:由下圖可得:有向線段為余弦線,有向線段為正弦線,有向線段為正切線. A選項(xiàng):當(dāng)點(diǎn)在上時(shí),, ,故A選項(xiàng)錯(cuò)誤; B選項(xiàng):當(dāng)點(diǎn)在上時(shí),,, ,故B選項(xiàng)錯(cuò)誤; C選項(xiàng):當(dāng)點(diǎn)在上時(shí),,, ,故C選項(xiàng)正確; D選項(xiàng):點(diǎn)在上且在第三象限,,故D選項(xiàng)錯(cuò)誤. 綜上,故選C. 點(diǎn)睛:此題考查三角函數(shù)的定義,解題的關(guān)鍵是能夠利用數(shù)形結(jié)
8、合思想,作出圖形,找到所對(duì)應(yīng)的三角函數(shù)線進(jìn)行比較. 8. 設(shè)集合則 A. 對(duì)任意實(shí)數(shù)a, B. 對(duì)任意實(shí)數(shù)a,(2,1) C. 當(dāng)且僅當(dāng)a<0時(shí),(2,1) D. 當(dāng)且僅當(dāng) 時(shí),(2,1) 【答案】D 【解析】分析:求出及所對(duì)應(yīng)的集合,利用集合之間的包含關(guān)系進(jìn)行求解. 詳解:若,則且,即若,則, 此命題的逆否命題為:若,則有,故選D. 點(diǎn)睛:此題主要結(jié)合充分與必要條件考查線性規(guī)劃的應(yīng)用,集合法是判斷充分條件與必要條件的一種非常有效的方法,根據(jù)成立時(shí)對(duì)應(yīng)的集合之間的包含關(guān)系進(jìn)行判斷. 設(shè),若,則;若,則,當(dāng)一個(gè)問(wèn)題從正面思考很難入手時(shí),可以考慮其逆否命題形式. 第二部分(非
9、選擇題 共110分) 二、填空題共6小題,每小題5分,共30分。 9. 設(shè)向量a=(1,0),b=(?1,m),若,則m=_________. 【答案】 【解析】分析:根據(jù)坐標(biāo)表示出,再根據(jù),得坐標(biāo)關(guān)系,解方程即可. 詳解:, , 由得:, , 即. 點(diǎn)睛:此題考查向量的運(yùn)算,在解決向量基礎(chǔ)題時(shí),常常用到以下:設(shè),則①;②. 10. 已知直線l過(guò)點(diǎn)(1,0)且垂直于𝑥軸,若l被拋物線截得的線段長(zhǎng)為4,則拋物線的焦點(diǎn)坐標(biāo)為_(kāi)________. 【答案】 【解析】分析:根據(jù)題干描述畫(huà)出相應(yīng)圖形,分析可得拋物線經(jīng)過(guò)點(diǎn),將點(diǎn)坐標(biāo)代入可求參數(shù)的值,進(jìn)而可求焦點(diǎn)
10、坐標(biāo). 詳細(xì):由題意可得,點(diǎn)在拋物線上,將代入中, 解得:,, 由拋物線方程可得:, 焦點(diǎn)坐標(biāo)為. 點(diǎn)睛:此題考查拋物線的相關(guān)知識(shí),屬于易得分題,關(guān)鍵在于能夠結(jié)合拋物線的對(duì)稱性質(zhì),得到拋物線上點(diǎn)的坐標(biāo),再者熟練準(zhǔn)確記憶拋物線的焦點(diǎn)坐標(biāo)公式也是保證本題能夠得分的關(guān)鍵. 11. 能說(shuō)明“若a﹥b,則”為假命題的一組a,b的值依次為_(kāi)________. 【答案】(答案不唯一) 【解析】分析:根據(jù)原命題與命題的否定的真假關(guān)系,可將問(wèn)題轉(zhuǎn)化為找到使“若,則”成立的,根據(jù)不等式的性質(zhì),去特值即可. 詳解:使“若,則”為假命題 則使“若,則”為真命題即可, 只需取即可滿足 所以
11、滿足條件的一組的值為(答案不唯一) 點(diǎn)睛:此題考查不等式的運(yùn)算,解決本題的核心關(guān)鍵在于對(duì)原命題與命題的否定真假關(guān)系的靈活轉(zhuǎn)換,對(duì)不等式性質(zhì)及其等價(jià)變形的充分理解,只要多取幾組數(shù)值,解決本題并不困難. 12. 若雙曲線的離心率為,則a=_________. 【答案】4 【解析】分析:根據(jù)離心率公式,及雙曲線中的關(guān)系可聯(lián)立方程組,進(jìn)而求解參數(shù)的值. 詳解:在雙曲線中,,且 點(diǎn)睛:此題考查雙曲線的基本知識(shí),離心率是高考對(duì)于雙曲線考查的一個(gè)重要考點(diǎn),根據(jù)雙曲線的離心率求雙曲線的標(biāo)準(zhǔn)方程及雙曲線的漸近線都是常見(jiàn)的出題形式,解題的關(guān)鍵在于利用公式,找到之間的關(guān)系. 13. 若&
12、#119909;,y滿足,則2y?𝑥的最小值是_________. 【答案】3 【解析】分析:將原不等式轉(zhuǎn)化為不等式組,畫(huà)出可行域,分析目標(biāo)函數(shù)的幾何意義,可知當(dāng)時(shí)取得最小值. 詳解:不等式可轉(zhuǎn)化為,即 滿足條件的在平面直角坐標(biāo)系中的可行域如下圖 令, 由圖象可知,當(dāng)過(guò)點(diǎn)時(shí),取最小值,此時(shí), 的最小值為. 點(diǎn)睛:此題考查線性規(guī)劃,求線性目標(biāo)函數(shù)的最值,當(dāng)時(shí),直線過(guò)可行域在軸上截距最大時(shí),值最大,在軸上截距最小時(shí),值最?。划?dāng)時(shí),直線過(guò)可行域在軸上截距最大時(shí),值最小,在軸上截距最小時(shí),值最大. 14. 若的面積為,且∠C為鈍角,則∠B=_________;的
13、取值范圍是_________. 【答案】 (1). (2). 【解析】分析:根據(jù)題干結(jié)合三角形面積公式及余弦定理可得,可求得;再利用,將問(wèn)題轉(zhuǎn)化為求函數(shù)的取值范圍問(wèn)題. 詳解:, ,即, , 則 為鈍角,, 故. 點(diǎn)睛:此題考查解三角形的綜合應(yīng)用,余弦定理的公式有三個(gè),能夠根據(jù)題干給出的信息選用合適的余弦定理公式是解題的第一個(gè)關(guān)鍵;根據(jù)三角形內(nèi)角的隱含條件,結(jié)合誘導(dǎo)公式及正弦定理,將問(wèn)題轉(zhuǎn)化為求解含的表達(dá)式的最值問(wèn)題是解題的第二個(gè)關(guān)鍵. 三、解答題共6小題,共80分.解答應(yīng)寫(xiě)出文字說(shuō)明,演算步驟或證明過(guò)程。 15. 設(shè)是等差數(shù)列,且. (Ⅰ)求的
14、通項(xiàng)公式; (Ⅱ)求. 【答案】(I) (II) 【解析】分析:(1)設(shè)公差為,根據(jù)題意可列關(guān)于的方程組,求解,代入通項(xiàng)公式可得;(2)由(1)可得,進(jìn)而可利用等比數(shù)列求和公式進(jìn)行求解. 詳解:(I)設(shè)等差數(shù)列的公差為, ∵, ∴, 又,∴. ∴. (II)由(I)知, ∵, ∴是以2為首項(xiàng),2為公比的等比數(shù)列. ∴ . ∴ 點(diǎn)睛:等差數(shù)列的通項(xiàng)公式及前項(xiàng)和共涉及五個(gè)基本量,知道其中三個(gè)可求另外兩個(gè),體現(xiàn)了用方程組解決問(wèn)題的思想. 16. 已知函數(shù). (Ⅰ)求的最小正周期; (Ⅱ)若在區(qū)間上的最大值為,求的最小值. 【答案】(Ⅰ) (Ⅱ) 【
15、解析】分析:(1)將化簡(jiǎn)整理成的形式,利用公式可求最小正周期;(2)根據(jù),可求的范圍,結(jié)合函數(shù)圖像的性質(zhì),可得參數(shù)的取值范圍. 詳解: (Ⅰ), 所以的最小正周期為. (Ⅱ)由(Ⅰ)知. 因?yàn)?,所? 要使得在上的最大值為,即在上的最大值為1. 所以,即. 所以的最小值為. 點(diǎn)睛:本題主要考查三角函數(shù)的有關(guān)知識(shí),解題時(shí)要注意利用二倍角公式及輔助角公式將函數(shù)化簡(jiǎn),化簡(jiǎn)時(shí)要注意特殊角三角函數(shù)值記憶的準(zhǔn)確性,及公式中符號(hào)的正負(fù). 17. 電影公司隨機(jī)收集了電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到下表: 電影類型 第一類 第二類 第三類 第四類 第五類 第六類 電影部數(shù) 1
16、40 50 300 200 800 510 好評(píng)率 0.4 0.2 0.15 0.25 0.2 0.1 好評(píng)率是指:一類電影中獲得好評(píng)的部數(shù)與該類電影的部數(shù)的比值. (Ⅰ)從電影公司收集的電影中隨機(jī)選取1部,求這部電影是獲得好評(píng)的第四類電影的概率; (Ⅱ)隨機(jī)選取1部電影,估計(jì)這部電影沒(méi)有獲得好評(píng)的概率; (Ⅲ)電影公司為增加投資回報(bào),擬改變投資策略,這將導(dǎo)致不同類型電影的好評(píng)率發(fā)生變化.假設(shè)表格中只有兩類電影的好評(píng)率數(shù)據(jù)發(fā)生變化,那么哪類電影的好評(píng)率增加0.1,哪類電影的好評(píng)率減少0.1,使得獲得好評(píng)的電影總部數(shù)與樣本中的電影總部數(shù)的比值達(dá)到最大?(只需
17、寫(xiě)出結(jié)論) 【答案】(Ⅰ) (Ⅱ) (Ⅲ)增加第五類電影的好評(píng)率,?減少第二類電影的好評(píng)率. 【解析】分析:(1)分別計(jì)算樣本中電影總部數(shù)及第四類電影中獲得好評(píng)的電影部數(shù),代入公式可得概率;(2)利用古典概型公式,計(jì)算沒(méi)有獲得好評(píng)的電影部數(shù),代入公式可得概率;(3)根據(jù)每部電影獲得好評(píng)的部數(shù)做出合理建議.. 詳解: (Ⅰ)由題意知,樣本中電影的總部數(shù)是140+50+300+200+800+510=2000. 第四類電影中獲得好評(píng)的電影部數(shù)是200×0.25=50, 故所求概率為. (Ⅱ)設(shè)“隨機(jī)選取1部電影,這部電影沒(méi)有獲得好評(píng)”為事件B. 沒(méi)有獲得好評(píng)的電影共有140×0
18、.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部. 由古典概型概率公式得. (Ⅲ)增加第五類電影的好評(píng)率, 減少第二類電影的好評(píng)率. 點(diǎn)睛:本題主要考查概率與統(tǒng)計(jì)知識(shí),屬于易得分題,應(yīng)用古典概型求某事件的步驟:第一步,判斷本試驗(yàn)的結(jié)果是否為等可能事件,設(shè)出事件;第二步,分別求出基本事件的總數(shù)與所求事件中所包含的基本事件個(gè)數(shù);第三步,利用公式求出事件的概率. 18. (本小題14分) 如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F(xiàn)分別為AD,PB的中點(diǎn). (Ⅰ)求證:PE
19、⊥BC; (Ⅱ)求證:平面PAB⊥平面PCD; (Ⅲ)求證:EF∥平面PCD. 【答案】(Ⅰ)見(jiàn)解析 (Ⅱ)見(jiàn)解析 (Ⅲ)見(jiàn)解析 【解析】分析:(1)欲證,只需證明即可;(2)先證平面,再證平面PAB⊥平面PCD;(3)取中點(diǎn),連接,證明,則平面. 詳解: (Ⅰ)∵,且為的中點(diǎn),∴. ∵底面為矩形,∴, ∴. (Ⅱ)∵底面為矩形,∴. ∵平面平面,∴平面. ∴.又, ∵平面,∴平面平面. (Ⅲ)如圖,取中點(diǎn),連接. ∵分別為和的中點(diǎn),∴,且. ∵四邊形為矩形,且為的中點(diǎn), ∴, ∴,且,∴四邊形為平行四邊形, ∴. 又平面,平面, ∴平面.
20、點(diǎn)睛:證明面面關(guān)系的核心是證明線面關(guān)系,證明線面關(guān)系的核心是證明線線關(guān)系.證明線線平行的方法:(1)線面平行的性質(zhì)定理;(2)三角形中位線法;(3)平行四邊形法. 證明線線垂直的常用方法:(1)等腰三角形三線合一;(2)勾股定理逆定理;(3)線面垂直的性質(zhì)定理;(4)菱形對(duì)角線互相垂直. 19. 設(shè)函數(shù). (Ⅰ)若曲線在點(diǎn)處的切線斜率為0,求a; (Ⅱ)若在處取得極小值,求a的取值范圍. 【答案】(Ⅰ) (Ⅱ) 【解析】分析:(1)求導(dǎo),構(gòu)建等量關(guān)系,解方程可得參數(shù)的值;(2)對(duì)分及兩種情況進(jìn)行分類討論,通過(guò)研究的變化情況可得取得極值的可能,進(jìn)而可求參數(shù)的取值范圍. 詳解: 解
21、:(Ⅰ)因?yàn)椋?
所以.
,
由題設(shè)知,即,解得.
(Ⅱ)方法一:由(Ⅰ)得.
若a>1,則當(dāng)時(shí),;
當(dāng)時(shí),.
所以在x=1處取得極小值.
若,則當(dāng)時(shí),,
所以.
所以1不是的極小值點(diǎn).
綜上可知,a的取值范圍是.
方法二:.
(1)當(dāng)a=0時(shí),令得x=1.
隨x的變化情況如下表:
x
1
+
0
?
↗
極大值
↘
∴在x=1處取得極大值,不合題意.
(2)當(dāng)a>0時(shí),令得.
①當(dāng),即a=1時(shí),,
∴在上單調(diào)遞增,
∴無(wú)極值,不合題意.
②當(dāng),即0
22、
0
?
0
+
↗
極大值
↘
極小值
↗
∴在x=1處取得極大值,不合題意.
③當(dāng),即a>1時(shí),隨x的變化情況如下表:
x
+
0
?
0
+
↗
極大值
↘
極小值
↗
∴在x=1處取得極小值,即a>1滿足題意.
(3)當(dāng)a<0時(shí),令得.
隨x的變化情況如下表:
x
?
0
+
0
?
↘
極小值
↗
極大值
↘
∴在x=1處取得極大值,不合題意.
綜上所述,a的取值范圍為.
點(diǎn)睛:導(dǎo)數(shù)類問(wèn)題是高考數(shù)學(xué)中的必考題,也是壓軸題,主要考查的形式 23、有以下四個(gè):①考查導(dǎo)數(shù)的幾何意義,涉及求曲線切線方程的問(wèn)題;②利用導(dǎo)數(shù)證明函數(shù)單調(diào)性或求單調(diào)區(qū)間問(wèn)題;③利用導(dǎo)數(shù)求函數(shù)的極值最值問(wèn)題;④關(guān)于不等式的恒成立問(wèn)題.
解題時(shí)需要注意的有以下兩個(gè)方面:①在求切線方程問(wèn)題時(shí),注意區(qū)別在某一點(diǎn)和過(guò)某一點(diǎn)解題步驟的不同;②在研究單調(diào)性及極值最值問(wèn)題時(shí)常常會(huì)涉及到分類討論的思想,要做到不重不漏;③不等式的恒成立問(wèn)題屬于高考中的難點(diǎn),要注意問(wèn)題轉(zhuǎn)換的等價(jià)性.
20. 已知橢圓的離心率為,焦距為.斜率為k的直線l與橢圓M有兩個(gè)不同的交點(diǎn)A,B.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)設(shè),直線PA與橢圓M的另一個(gè)交點(diǎn)為C,直線PB與橢 24、圓M的另一個(gè)交點(diǎn)為D.若C,D和點(diǎn) 共線,求k.
【答案】(Ⅰ)
(Ⅱ)
(Ⅲ)
【解析】分析:(1)根據(jù)題干可得的方程組,求解的值,代入可得橢圓方程;(2)設(shè)直線方程為,聯(lián)立,消整理得,利用根與系數(shù)關(guān)系及弦長(zhǎng)公式表示出,求其最值;(3)聯(lián)立直線與橢圓方程,根據(jù)韋達(dá)定理寫(xiě)出兩根關(guān)系,結(jié)合三點(diǎn)共線,利用共線向量基本定理得出等量關(guān)系,可求斜率.
詳解:
(Ⅰ)由題意得,所以,
又,所以,所以,
所以橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)設(shè)直線的方程為,
由消去可得,
則,即,
設(shè),,則,,
則,
易得當(dāng)時(shí),,故的最大值為.
(Ⅲ)設(shè),,,,
則 ①, ②,
又,所以可設(shè),直線的方程為,
由消去可得,
則,即,
又,代入①式可得,所以,
所以,同理可得.
故,,
因?yàn)槿c(diǎn)共線,所以,
將點(diǎn)的坐標(biāo)代入化簡(jiǎn)可得,即.
點(diǎn)睛:本題主要考查橢圓與直線的位置關(guān)系,第一問(wèn)只要找到三者之間的關(guān)系即可求解;第二問(wèn)主要考查學(xué)生對(duì)于韋達(dá)定理及弦長(zhǎng)公式的運(yùn)用,可將弦長(zhǎng)公式變形為,再將根與系數(shù)關(guān)系代入求解;第三問(wèn)考查橢圓與向量的綜合知識(shí),關(guān)鍵在于能夠?qū)⑷c(diǎn)共線轉(zhuǎn)化為向量關(guān)系,再利用共線向量基本定理建立等量關(guān)系求解.
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購(gòu)管理4
- 手術(shù)室的安全管理教材
- 圖表文轉(zhuǎn)換之徽標(biāo)..課件
- 3.2.1古典概型
- 廣泛的民主權(quán)利 (3)
- 3.3公式法(1)
- 哲學(xué)家和船夫的故事
- 古詩(shī)十九首-行行重行行
- 第8章 財(cái)務(wù)報(bào)表
- 戰(zhàn)略性績(jī)效管理篇_方振邦
- 銅梁總規(guī)分析課件
- 1.2有理數(shù) (3)
- 第二章市場(chǎng)經(jīng)濟(jì)體制-第一章政治經(jīng)濟(jì)學(xué)研究對(duì)象與經(jīng)濟(jì)制度
- 彌漫大B細(xì)胞淋巴瘤一線治療新標(biāo)準(zhǔn)課件
- 對(duì)公信貸政策知識(shí)培訓(xùn)