《桿件的變形計(jì)算》PPT課件.ppt
《《桿件的變形計(jì)算》PPT課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《《桿件的變形計(jì)算》PPT課件.ppt(30頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第四章桿件的變形計(jì)算,第一節(jié)拉(壓)桿的軸向變形,EA稱為拉(壓)桿的抗拉(壓)剛度,泊松比,階梯形直桿受力如圖所示,已知該桿AB段橫截面面積A1=800mm2,BC段,A2=240mm2,桿件材料的彈性模量E=200GPa。試求該桿總變形量。解(1)求AB、BC段軸力FNAB=40kN(拉)FNBC=-20kN(壓)(2)求AB、BC段伸長(zhǎng)量,(3)AC桿總伸長(zhǎng),例4-1,圖示桁架,鋼桿AC橫截面面積A1=960mm2,彈性模量E=200GPa。木桿BC橫截面A2=25000mm2,楊氏模量E=10GPa。求鉸節(jié)點(diǎn)C的位移。,,,(2)求AC、BC兩桿的變形。,例4-2,解(1)求AC、CB兩桿的軸力。,(3)求C點(diǎn)位移。,練習(xí),已知拉桿CD:l=2m,d=40mm,E=200GPaAB為剛性梁,求B點(diǎn)位移。,第二節(jié)圓軸的扭轉(zhuǎn)變形與相對(duì)扭轉(zhuǎn)角,,在圓軸扭轉(zhuǎn)時(shí),各橫截面繞軸線作相對(duì)轉(zhuǎn)動(dòng),相距為dx的兩個(gè)相鄰截面間有相對(duì)轉(zhuǎn)角dφ,上式稱為單位長(zhǎng)度扭轉(zhuǎn)角,用來(lái)表示扭轉(zhuǎn)變形的大小,其單位是rad/m。,當(dāng)GIP越大,則θ越小,故稱GIP為圓軸的抗扭剛度。兩端相對(duì)扭轉(zhuǎn)角,當(dāng)Mx/GIP為常量時(shí),上式為,某機(jī)器傳動(dòng)軸AC如圖所示,已知軸材料的切變模量G=80GPa,軸直徑d=45mm。求AB、BC及AC間相對(duì)扭轉(zhuǎn)角,最大單位長(zhǎng)度扭轉(zhuǎn)角。解(1)內(nèi)力分析,(2)變形分析,AB段,BC段,例4-3,為軸的抗扭強(qiáng)度,當(dāng)軸的截面為矩形時(shí),兩端相對(duì)扭轉(zhuǎn)角的計(jì)算公式為,為與比值h/b有關(guān)的系數(shù),可查表得,已知:n=200r/min,PA=200kW,PB=90kW,PC=50kW,PD=60kW,G=200GPa,dAC=0.06m,dBC=dAD=0.04m。,解:1.求外力扭矩;2.求內(nèi)力扭矩,畫內(nèi)力圖;3.各段變形及總變形;4.求最大單位長(zhǎng)度扭轉(zhuǎn)角。,練習(xí),試求:(1)軸兩端截面相對(duì)轉(zhuǎn)角(2)最大單位長(zhǎng)度扭轉(zhuǎn)角,,解答,已知:n=200r/min,PA=60kW,PB=150kW,PC=90kW,G=200GPa,dAB=0.06m,dBC=0.04m。,試求:(1)軸兩端截面相對(duì)轉(zhuǎn)角(2)最大單位長(zhǎng)度扭轉(zhuǎn)角,第三節(jié)梁的彎曲變形、撓曲線近似微分方程,一、梁的變形當(dāng)梁在平面內(nèi)彎曲時(shí),梁的軸線從原來(lái)沿軸方向的直線變成一條在平面內(nèi)的連續(xù)、光滑的曲線,該曲線稱為梁的撓曲線。橫截面形心沿豎向位移w,稱為該截面的撓度;而截面法向方向與軸的夾角θ稱為該截面的轉(zhuǎn)角。截面形心C點(diǎn)的豎向位移w,一般可表為x的函數(shù),這一關(guān)系式稱為撓曲線方程,符號(hào)規(guī)定:撓度:向上為正,向下為負(fù)。轉(zhuǎn)角:截面法線與軸夾角逆時(shí)針為正,順時(shí)針為負(fù),即在圖示坐標(biāo)系中撓曲線具有正斜率時(shí)轉(zhuǎn)角為正。,二、撓曲線近似微分方程,在純彎曲梁的情況下,梁的中性層曲率與梁的彎矩之間關(guān)系為,橫力彎曲時(shí),若梁的跨度遠(yuǎn)大于梁的高度時(shí),剪力對(duì)梁的變形影響可以忽略不計(jì),撓曲線與轉(zhuǎn)角之間近似有,撓曲線的斜率近似等于截面的轉(zhuǎn)角,由微分學(xué)可知,,按彎矩的符號(hào)規(guī)定,當(dāng)M>0時(shí),梁的上部受壓,下部受拉,撓曲線上凹,由微分學(xué)知,在圖示坐標(biāo)下,w”為正;當(dāng)M<0,梁下部受壓,上部受拉,撓曲線下凹,w”為負(fù).可去掉號(hào)。,當(dāng)梁小變形時(shí),代入前面的式子,得,梁的撓曲線近似微分方程,可得,第四節(jié)用積分法求梁的彎曲變形,將上式梁的撓曲線近似微分方程積分一次,就得到轉(zhuǎn)角方程,再積分一次得到撓曲線方程。對(duì)等直梁,EIZ為常量,有,積分常數(shù)C、D,可由梁的邊界條件來(lái)確定,等直懸臂梁受均布載荷如圖所示,試建立該梁的轉(zhuǎn)角方程和撓曲線方程,并求自由端的轉(zhuǎn)角和撓度。,(2)列撓曲線近似微分方程,(3)積分,解(1)彎矩方程,例4-4,(4)確定積分常數(shù),由邊界條件,當(dāng)x=0,,分別代入前面的式子得,(5)列出轉(zhuǎn)角方程和撓曲線方程,(6)求自由端撓度和轉(zhuǎn)角,一簡(jiǎn)支梁上點(diǎn)C處作用力F,設(shè)EI為常數(shù)。試建立轉(zhuǎn)角方程和撓曲線方程,并求梁內(nèi)最大撓度及轉(zhuǎn)角。,解(1)求支反力和列彎矩方程。,(2)列出撓曲線近似微分方程并積分。,例4-5,(3)確定積分常數(shù)。,(4)列轉(zhuǎn)角方程和撓曲線方程。,(5)確定最大撓度及轉(zhuǎn)角,最大撓度應(yīng)發(fā)生在AC段上處,將θ=0代入式(9),求出x1,將其代入式(10)求得最大撓度絕對(duì)值,梁的中點(diǎn)的撓度,當(dāng)作用點(diǎn)C與梁的中點(diǎn)越接近,最大撓度與中點(diǎn)撓度兩者相差越小,若C點(diǎn)靠近支座B,則兩者相差最大兩者相差不超過(guò)2.6%??梢?jiàn)在簡(jiǎn)支梁中,只要撓曲線上無(wú)拐點(diǎn),可用中點(diǎn)撓度來(lái)代替其最大撓度。,練習(xí),第五節(jié)用疊加法求梁的彎曲變形,在桿件符合線彈性、小變形的前提下,變形與載荷成線性關(guān)系,即任一載荷使桿件產(chǎn)生的變形均與其它載荷無(wú)關(guān)。這樣只要分別求出桿件上每個(gè)載荷單獨(dú)作用產(chǎn)生的變形,將其相加,便得到了這些載荷共同作用時(shí)桿件的變形。這就是求桿件變形的疊加法。,例4-6求圖示梁撓曲線方程,并求中點(diǎn)撓度及最大轉(zhuǎn)角。已知,M=ql2/2,梁的抗彎剛度為EI。,解(1)求撓曲線方程。,(2)求最大轉(zhuǎn)角和中點(diǎn)撓度。,例4-7一外伸梁,簡(jiǎn)支段AB受均布荷載的作用,而外伸段自由端C作用一集中力,求C處撓度和轉(zhuǎn)角。,解采用逐段剛化的方法:首先剛化AB段,這樣BC可作為一懸臂梁來(lái)研究,C點(diǎn)的撓度和轉(zhuǎn)角為,再剛化BC段,將力F平移到B,得F’及力偶M。力F’對(duì)梁的變形沒(méi)有影響,力偶M引起AB段變形,使B處產(chǎn)生轉(zhuǎn)角.,同樣,q引起了AB段變形,使C點(diǎn)產(chǎn)生轉(zhuǎn)角和位移:,將上述變形相加,便得到原梁的變形,例4-8在簡(jiǎn)支梁上部分作用均布載荷,求梁跨中點(diǎn)撓度.,解在微段dx的載荷可作為一集中力,在該集中力作用下由表4-2可查得跨度中點(diǎn)的撓度為,跨度中點(diǎn)的撓度應(yīng)為上式的積分,求中點(diǎn)C撓度,練習(xí),Fl,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 桿件的變形計(jì)算 變形 計(jì)算 PPT 課件
鏈接地址:http://www.820124.com/p-11509378.html