《2020屆高考數(shù)學一輪總復習 課時跟蹤練(七十七)專題探究課(六)理(含解析)新人教A版》由會員分享,可在線閱讀,更多相關《2020屆高考數(shù)學一輪總復習 課時跟蹤練(七十七)專題探究課(六)理(含解析)新人教A版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課時跟蹤練(七十七)
A組 基礎鞏固
1.某品牌手機廠商推出新款的旗艦機型,并在某地區(qū)跟蹤調(diào)查得到這款手機上市時間(x個月)和市場占有率(y%)的幾組相關對應數(shù)據(jù):
x
1
2
3
4
5
y
0.02
0.05
0.1
0.15
0.18
(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
(2)根據(jù)(1)得到的回歸方程,分析該款旗艦機型市場占有率的變化趨勢,并預測自上市起經(jīng)過多少個月,該款旗艦機型市場占有率能超過0.5%(精確到月).
附:=,=-b.
解:(1)由數(shù)據(jù)表知=3,=0.1,
代入計算=0.042,=-0.026.
所以線
2、性回歸方程為=0.042x-0.026.
(2)由(1)中回歸方程可知,上市時間與市場占有率正相關,即上市時間每增加1個月,市場占有率就增加0.042個百分點.
由=0.042x-0.026>0.5,解得x≥13.
預計上市13個月時,該款旗艦機型市場占有率能超過0.5%.
2.(2019·豫南九校聯(lián)考)為創(chuàng)建國家級文明城市,某城市號召出租車司機在高考期間至少進行一次“愛心送考”,該城市某出租車公司共200名司機,他們進行“愛心送考”的次數(shù)統(tǒng)計如圖所示:
(1)求該出租車公司的司機進行“愛心送考”的人均次數(shù);
(2)從這200名司機中任選兩人,設這兩人進行送考次數(shù)之差的絕對值為
3、隨機變量X,求X的分布列及數(shù)學期望.
解:(1)由統(tǒng)計圖得200名司機中送考1次的有20人,
送考2次的有100人,送考3次的有80人,
所以該出租車公司的司機進行“愛心送考”的人均次數(shù)為=2.3.
(2)從該公司任選兩名司機,記“這兩人中一人送考1次,另一人送考2次”為事件A,
“這兩人中一人送考2次,另一人送考3次”為事件B,
“這兩人中一人送考1次,另一人送考3次”為事件C,
“這兩人送考次數(shù)相同”為事件D,
由題意知X的所有可能取值為0,1,2,
P(X=1)=P(A)+P(B)=+=,
P(X=2)=P(C)==,
P(X=0)=P(D)==,
所以X的分布列
4、為
X
0
1
2
P
E(X)=0×+1×+2×=.
3.(2018·天津卷)已知某單位甲、乙、丙三個部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進行睡眠時間的調(diào)查.
(1)應從甲、乙、丙三個部門的員工中分別抽取多少人?
(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機抽取3人做進一步的身體檢查.
①用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機變量X的分布列與數(shù)學期望;
②設A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.
解:(1)由已知,甲、乙、丙三個部門的員工人
5、數(shù)之比為3∶2∶2,由于采用分層抽樣的方法從中抽取7人,因此應從甲、乙、丙三個部門的員工中分別抽取3人,2人,2人.
(2)①隨機變量X的所有可能取值為0,1,2,3.
P(X=k)=(k=0,1,2,3).
所以隨機變量X的分布列為
X
0
1
2
3
P
隨機變量X的數(shù)學期望E(X)=0×+1×+2×+3×=.
②設事件B為“抽取的3人中,睡眠充足的員工有1人,睡眠不足的員工有2人”;事件C為“抽取的3人中,睡眠充足的員工有2人,睡眠不足的員工有1人”,則A=B∪C,且B與C互斥.
由①知,P(B)=P(X=2),P(C)=P(X=1),
故P
6、(A)=P(B∪C)=P(X=2)+P(X=1)=.
所以事件A發(fā)生的概率為.
4.(2019·珠海模擬)某興趣小組進行“野島生存”實踐活動,他們設置了200個取水敞口箱.其中100個采用A種取水法,100個采用B種取水法.如圖1為A種方法一個夜晚操作一次100個水箱積取淡水量頻率分布直方圖,圖2為B種方法一個夜晚操作一次100個水箱積取淡水量頻率分布直方圖.
(1)設兩種取水方法互不影響,設M表示事件“A法取水箱積水量不低于1.0 kg,B法取水箱積水量不低于1.1 kg”,以樣本估計總體,以頻率分布直方圖中的頻率為概率,估計M的概率;
(2)填寫下面2×2列聯(lián)表,并判斷是否有9
7、9%的把握認為箱積水量與取水方法有關.
分類
箱積水量<1.1 kg
箱積水量≥1.1 kg
箱數(shù)總計
A法
B法
箱數(shù)總計
附:K2=.
P(K2≥k0)
0.050
0.010
0.001
k0
3.841
6.635
10.828
解:(1)設“A法取水箱積水量不低于1.0 kg”為事件E,“B法取水箱積水量不低于1.1 kg”為事件F,P(E)=(2+1+0.3)×0.1=0.33,P(F)=(5+3+0.2+0.1)×0.1=0.83,
P(M)=P(EF)=P(E)·P(F)=0.33×0.83=0.2
8、73 9,
故估計M發(fā)生的概率為0.273 9.
(2)2×2列聯(lián)表如下:
分類
箱積水量<1.1 kg
箱積水量≥1.1 kg
箱數(shù)總計
A法
87
13
100
B法
17
83
100
箱數(shù)總計
104
96
200
K2==
≈98.157>6.635,
所以有99%的把握認為箱積水量與取水方法有關.
B組 素養(yǎng)提升
5.(2019·化州模擬)中石化集團獲得了某地深海油田塊的開采權,集團在該地區(qū)隨機初步勘探了幾口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡點來布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井
9、位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見下表:
井號
1
2
3
4
5
6
坐標(x,y)(km)
(2,30)
(4,40)
(5,60)
(6,50)
(8,70)
(1,y)
勘探深度(km)
2
4
5
6
8
10
出油量(L)
40
70
110
90
160
205
(1)1~6號舊井的位置大致分布在一條直線附近,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計y的預報值;
(2)現(xiàn)準備勘探新井7(1,25),若通過1、3、5、7號井計算出的,的值(,精確
10、到0.01)與(1)中b,a的值差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井?
參考公式和計算結果:==y(—)-,.
(3)設出油量與勘探深度的比值k不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井數(shù)X的分布列與數(shù)學期望.
解:(1)利用前5組數(shù)據(jù)得到=×(2+4+5+6+8)=5,
=×(30+40+60+50+70)=50,
因為y=6.5x+a,所以a=50-6.5×5=17.5,
所以回歸直線方程為y=6.5x+17.5,
當x=1時,y=6.5+17.5=24,所以y的預報值為24.
(2)
11、利用1、3、5、7號井的數(shù)據(jù)得==4,
==46.25,
又=94, x2i-1 y2i-1=945
所以==≈6.83,
又因為=-,
所以=46.25-6.83×4=18.93,
又b=6.5,a=17.5,所以≈5%,≈8%,均不超過10%,
所以可使用位置最接近的已有舊井6(1,24).
(3)由題意,1、3、5、6這4口井是優(yōu)質(zhì)井,2,4這兩口井是非優(yōu)質(zhì)井,
所以勘察優(yōu)質(zhì)井數(shù)X的可能取值為2,3,4,
由P(X=k)=(k=2,3,4),可得P(X=2)=,
P(X=3)=,P(X=4)=.
所以X的分布列為
X
2
3
4
P
E
12、(X)=2×+3×+4×=.
6.(2017·全國卷Ⅰ)為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線在正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).
(1)假設生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.
(ⅰ)試說明上述監(jiān)控生產(chǎn)過程方法的合理性;
13、
(ⅱ)下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:
9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04
10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95
經(jīng)計算得= xi=9.97,s==)≈0.212,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
用樣本平均數(shù)作為μ的估計值,用樣本標準差s作為σ的估計值,利用估計值判斷是否需對當天的生產(chǎn)過程進行檢查.剔除(-3,+3)之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計μ和σ(精確到0.01).
附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ-3σ
14、)=0.997 4,
0.997 416≈0.959 2,≈0.09.
解:(1)抽取的一個零件的尺寸在(μ-3σ,μ+3σ)之內(nèi)的概率為0.997 4,從而零件的尺寸在(μ-3σ,μ+3σ)之外的概率為0.002 6,故X~B(16,0.002 6).
因此P(X≥1)=1-P(X=0)=1-0.997 416≈0.040 8.
X的數(shù)學期望為E(X)=16×0.002 6=0.041 6.
(2)(ⅰ)如果生產(chǎn)狀態(tài)正常,一個零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天內(nèi)抽取的16個零件中,出現(xiàn)尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,發(fā)
15、生的概率很小,因此一旦發(fā)生這種情況,就有理由認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查,可見上述監(jiān)控生產(chǎn)過程的方法是合理的.
(ⅱ)由=9.97,s≈0.212,得μ的估計值為=9.97,σ的估計值為=0.212,由樣本數(shù)據(jù)可以看出有一個零件的尺寸在(-3,+3)之外,因此需對當天的生產(chǎn)過程進行檢查.
剔除(-3,+3)之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的平均數(shù)為×(16×9.97-9.22)=10.02.
因此μ的估計值為10.02.
x=16×0.2122+16×9.972≈1 591.134,
剔除(-3,+3)之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的樣本方差為×(1 591.134-9.222-15×10.022)≈0.008,
因此σ的估計值為≈0.09.
7