《2018-2019學(xué)年高二數(shù)學(xué)下學(xué)期月考試題理.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2018-2019學(xué)年高二數(shù)學(xué)下學(xué)期月考試題理.doc(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2018-2019學(xué)年高二數(shù)學(xué)下學(xué)期月考試題理一選擇題:共12小題,每小題5分,共60分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的一項(xiàng).1下列命題中,正確的是()A.若,則B. 若,則C.若,則 D. 若,則2. 已知命題,則是( )A. B. C. D. 3已知等比數(shù)列滿(mǎn)足,則 = ( )A2B1CD4. 已知實(shí)數(shù)滿(mǎn)足,則的最小值為( )A. B. C. D. 5. 下列命題中為真命題的是( )A.命題“若,則”的逆命題 B.命題“若,則”的逆否命題 C.命題“若,則”的否命題 D.命題“若,則”的否命題6. 若“”是“”的充分不必要條件,則實(shí)數(shù)的取值范圍是()A. B. C.
2、D. 7已知,成等差數(shù)列,成等比數(shù)列,則的最小值是A.0 B.1 C.2 D.48函數(shù)的圖象恒過(guò)定點(diǎn)A,且點(diǎn)A在直線(xiàn)上,則的最小值為( )A8B10C12D149等差數(shù)列的首項(xiàng)為1,公差不為0若a2,a3,a6成等比數(shù)列,則前6項(xiàng)的和為( )ABC3D810.數(shù)列中,已知對(duì)任意則等于( )A. B. C. D.11.已知的最大值為( )A. B. C. D.12.在中,.若以為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn),則橢圓的離心率( )A. B. C. D. 二填空題:共4小題,每小題5分,共20分.13.已知橢圓的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在軸上,離心率,且的一點(diǎn)到的兩個(gè)焦點(diǎn)的距離之和為,則橢圓的方程為 14.已知?jiǎng)訄A
3、過(guò)定點(diǎn),且在軸上截得的弦長(zhǎng)為,求動(dòng)圓圓心的軌跡方程 15.設(shè)函數(shù)則不等式的解集是 16. 已知數(shù)列滿(mǎn)足,則的最小值 三解答題:共6小題,共70分.17.(本題滿(mǎn)分10分) 命題:關(guān)于的不等式對(duì)于恒成立;命題:指數(shù)函數(shù)是上的增函數(shù);若為真,為假,求實(shí)數(shù)的取值范圍.18.(本小題滿(mǎn)分12分)如圖所示,在四邊形中, =,且,(1)求的面積;(2)若,求的長(zhǎng)19.(本小題滿(mǎn)分12分)從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,經(jīng)算得:,。(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線(xiàn)性回歸方程;(2)判斷變量與之間是正相關(guān)還是負(fù)相關(guān);(3)若該居民區(qū)某家庭月收入
4、為千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄附:線(xiàn)性回歸方程中.20.(本小題滿(mǎn)分12分)已知是矩形,分別是線(xiàn)段的中點(diǎn),平面(1)求證:平面;(2)在棱上找一點(diǎn),使平面,并說(shuō)明理由21.(本小題滿(mǎn)分12分)已知數(shù)列的前項(xiàng)和為,且,(且)(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和22.(本小題滿(mǎn)分12分)設(shè)動(dòng)點(diǎn)滿(mǎn)足,(1) 求動(dòng)點(diǎn)的軌跡方程;(2) 直線(xiàn)不過(guò)原點(diǎn)且不平行于坐標(biāo)軸,與動(dòng)點(diǎn)的軌跡有兩個(gè)交點(diǎn)、,線(xiàn)段的中點(diǎn)為. 求證:直線(xiàn)的斜率與直線(xiàn)的斜率的乘積為定值.玉溪市民族中學(xué)xxxx上學(xué)期期中考試高二年級(jí) 理科數(shù)學(xué)試卷命題人:侯勇 聯(lián)系電話(huà):65036 審核人:周開(kāi)貴一選擇題:共12小題,每小題5分,共60
5、分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的一項(xiàng).123456789101112CBCBAADCADAD 二填空題:共4小題,每小題5分,共20分.15、 16. 三解答題:共6小題,共70分.17、(本題滿(mǎn)分12分) 設(shè),由于關(guān)于的不等式對(duì)于一切恒成立,所以函數(shù)的圖象開(kāi)口向上且與軸沒(méi)有交點(diǎn),故,. 2分函數(shù)是增函數(shù),則有,即. 由于p或q為真,p且q為假,可知p、q一真一假. 若p真q假,則 ; 若p假q真,則;綜上可知,所求實(shí)數(shù)的取值范圍是或18、解:(1) (2分)因?yàn)椋?,?分)所以ACD的面積(6分)(2)解法一:在ACD中,所以(8分)在ABC中,(10分) 把已知
6、條件代入并化簡(jiǎn)得:因?yàn)?,所?(12分)解法二:在ACD中,在ACD中,所以(8分)因?yàn)?,所?,(10分)得(12分)1920、(本小題滿(mǎn)分12分)解】:證明:在矩形ABCD中,因?yàn)锳D=2AB,點(diǎn)F是BC的中點(diǎn),所以AFB=DFC=45所以AFD=90,即AFFD 又PA平面ABCD,所以PAFD所以FD平面PAF ()過(guò)E作EH/FD交AD于H,則EH/平面PFD,且AH=AD再過(guò)H作HG/PD交PA于G, 所以GH/平面PFD,且AG=PA所以平面EHG/平面PFD 所以EG/平面PFD從而點(diǎn)G滿(mǎn)足AG=PA22、(本小題滿(mǎn)分12分)解:(1)由題 由得:,即,4分當(dāng)時(shí),,, 5分所以,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,故()(2)由(1)(),所以, 10分所以 12分22、(本小題滿(mǎn)分12分)解:(1)根據(jù)橢圓定義可得動(dòng)點(diǎn)的軌跡方程為5分(2)設(shè)直線(xiàn)將代入得故于是直線(xiàn)OM的斜率,即所以直線(xiàn)OM的斜率與直線(xiàn)的斜率的乘積為定值。