影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2020版高考數(shù)學一輪復(fù)習 課后限時集訓22 正弦定理和余弦定理(含解析)理

上傳人:Sc****h 文檔編號:116554002 上傳時間:2022-07-05 格式:DOC 頁數(shù):7 大?。?.54MB
收藏 版權(quán)申訴 舉報 下載
2020版高考數(shù)學一輪復(fù)習 課后限時集訓22 正弦定理和余弦定理(含解析)理_第1頁
第1頁 / 共7頁
2020版高考數(shù)學一輪復(fù)習 課后限時集訓22 正弦定理和余弦定理(含解析)理_第2頁
第2頁 / 共7頁
2020版高考數(shù)學一輪復(fù)習 課后限時集訓22 正弦定理和余弦定理(含解析)理_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學一輪復(fù)習 課后限時集訓22 正弦定理和余弦定理(含解析)理》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學一輪復(fù)習 課后限時集訓22 正弦定理和余弦定理(含解析)理(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、課后限時集訓(二十二) (建議用時:60分鐘) A組 基礎(chǔ)達標 一、選擇題 1.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若2sin Acos B=sin C,那么△ABC一定是( ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等邊三角形 B [法一:由已知得2sin Acos B=sin C=sin(A+B)=sin Acos B+cos Asin B,即sin(A-B)=0,因為-π<A-B<π,所以A=B. 法二:由正弦定理得2acos B=c,再由余弦定理得2a·=c?a2=b2?a=b.] 2.在△ABC中,已知b=40,c=2

2、0,C=60°,則此三角形的解的情況是( ) A.有一解 B.有兩解 C.無解 D.有解但解的個數(shù)不確定 C [由正弦定理得=, ∴sin B===>1. ∴角B不存在,即滿足條件的三角形不存在.] 3.(2016·天津高考)在△ABC中,若AB=,BC=3,∠C=120°,則AC=( ) A.1 B.2 C.3 D.4 A [由余弦定理得AB2=AC2+BC2-2AC·BC·cos C,即13=AC2+9-2AC×3×cos 120°,化簡得AC2+3AC-4=0,解得AC=1或AC=-4(舍去).

3、故選A.] 4.(2019·長春模擬)△ABC中,AB=,AC=1,∠B=30°,則△ABC的面積等于( ) A. B. C.或 D.或 D [由余弦定理得AC2=AB2+BC2-2AB·BC·cos B, 即1=3+BC2-3BC,解得BC=1或BC=2, 當BC=1時,△ABC的面積S=AB·BCsin B=××1×=. 當BC=2時,△ABC的面積S=AB·BCsin B=××2×=. 總上之,△ABC的面積等于或.] 5.(2016·全國卷Ⅲ)在△ABC中,B=,BC邊上的高等于BC,則sin A=( ) A. B. C.

4、D. D [過A作AD⊥BC于D,設(shè)BC=a,由已知得AD=.∵B=,∴AD=BD,∴BD=AD=,DC=a, ∴AC==a,在△ABC中,由正弦定理得=, ∴sin ∠BAC=,故選D.] 二、填空題 6.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=2,cos C=-,3sin A=2sin B,則c=________. 4 [由3sin A=2sin B及正弦定理,得3a=2b,所以b=a=3.由余弦定理cos C=,得-=,解得c=4.] 7.(2019·青島模擬)如圖所示,在△ABC中,已知點D在BC邊上,AD⊥AC,sin∠BAC=,AB=3,AD=3,

5、則BD的長為________.  [∵sin∠BAC=sin(90°+∠BAD)=cos∠BAD=, ∴在△ABD中,有BD2=AB2+AD2-2AB·ADcos∠BAD, ∴BD2=18+9-2×3×3×=3, ∴BD=.] 8.設(shè)△ABC三個內(nèi)角A,B,C所對的邊分別為a,b,c,若a2sin C=4sin A,(ca+cb)(sin A-sin B)=sin C(2-c2),則△ABC的面積為________.  [由a2sin C=4sin A得ac=4,由(ca+cb)·(sin A-sin B)=sin C(2-c2)得(a+b)(a-b)=2-c2,即a2+c2-

6、b2=2,所以cos B=,則sin B=,所以S△ABC=acsin B=.] 三、解答題 9.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,sin2B=2sin Asin C. (1)若a=b,求cos B; (2)設(shè)B=90°,且a=,求△ABC的面積. [解] (1)由題設(shè)及正弦定理可得b2=2ac. 又a=b,可得b=2c,a=2c. 由余弦定理可得cos B==. (2)由(1)知b2=2ac. 因為B=90°,由勾股定理得a2+c2=b2, 故a2+c2=2ac,進而可得c=a=. 所以△ABC的面積為××=1. 10.(2019·鄭州模擬)在△ABC

7、中,角A,B,C的對邊分別為a,b,c,且滿足bcos A=(2c+a)cos(π-B). (1)求角B的大小; (2)若b=4,△ABC的面積為,求△ABC的周長. [解] (1)∵bcos A=(2c+a)cos(π-B),∴bcos A=(2c+a)(-cos B). 由正弦定理可得,sin Bcos A=(-2sin C-sin A)cos B, 即sin(A+B)=-2sin Ccos B=sin C. 又角C為△ABC的內(nèi)角,∴sin C>0,∴cos B=-. 又B∈(0,π),∴B=. (2)由S△ABC=acsin B=,得ac=4. 又b2=a2+c2+a

8、c=(a+c)2-ac=16. ∴a+c=2,∴△ABC的周長為4+2. B組 能力提升 1.(2019·佛山模擬)在△ABC中,角A,B,C的對邊分別是a,b,c,已知b=2,c=2,且C=,則△ABC的面積為( ) A.+1  B.-1  C.4  D.2 A [法一:由余弦定理可得(2)2=22+a2-2×2×a×cos,即a2-2a-4=0,解得a=+或a=-(舍去),△ABC的面積S=absin C=×2×(+)sin=×2××(+)=+1,選A. 法二:由正弦定理=,得sin B==,又c>b,且B∈(0,π),所以B=,所以A=,所以△AB

9、C的面積S=bcsin A=×2×2sin=×2×2×=+1.] 2.在△ABC中,AC=,BC=2,B=60°,則BC邊上的高為( ) A. B. C. D. B [在△ABC中,由余弦定理可得,AC2=AB2+BC2-2AB×BC×cos B,因為AC=,BC=2,B=60°,所以7=AB2+4-4×AB×,所以AB2-2AB-3=0,所以AB=3,作AD⊥BC,垂足為D,則在Rt△ADB中,AD=AB×sin 60°=,即BC邊上的高為,故選B.] 3.(2019·寶雞模擬)如圖,在Rt△ABC中,兩條直角邊分別為AB,BC,且AB=2,BC=2,P為

10、△ABC內(nèi)一點,∠BPC=90°.若PB=1,則PA=________.  [依題意,在Rt△ABC中,AC==4,sin∠ACB==,所以∠ACB=60°.在Rt△PBC中,PC==,sin∠PCB==,∠PCB=30°,因此∠ACP=∠ACB-∠PCB=30°.在△ACP中,AP==.] 4.(2019·貴陽模擬)在△ABC中,角A,B,C所對的邊分別為a,b,c,1+=. (1)求角A的大??; (2)若△ABC為銳角三角形,求函數(shù)y=2sin2B-2sin Bcos C的取值范圍; (3)現(xiàn)在給出下列三個條件:①a=1;②2c-(+1)b=0;③B=,試從中選擇兩個條件以確

11、定△ABC,求出所確定的△ABC的面積. [解] (1)因為1+=,所以由正弦定理,得1+==. 因為A+B+C=π,所以sin(A+B)=sin C, 所以=, 所以cos A=,故A=. (2)因為A+B+C=π,A=, 所以B+C=. 所以y=2sin2B-2sin Bcos C =1-cos 2B-2sin Bcos =1-cos 2B+sin Bcos B-sin2B =1-cos 2B+sin 2B-+cos 2B =+sin 2B-cos 2B =sin+. 又△ABC為銳角三角形, 所以<B<?<2B-<, 所以<sin<1, 所以y=sin+∈. (3)法一:選擇①②,可確定△ABC. 因為A=,a=1,2c-(+1)b=0, 由余弦定理,得12=b2+2-2b·b·, 整理得b2=2,b=,c=, 所以S△ABC=bcsin A=×××=. 法二:選擇①③,可確定△ABC. 因為B=,所以C=. 又sin=sin=sincos+cossin=, 故由正弦定理得c===, 所以S△ABC=acsin B=×1××=. - 7 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!