影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)16 不等式選講 文

上傳人:Sc****h 文檔編號:116725227 上傳時間:2022-07-06 格式:DOC 頁數(shù):4 大?。?.40MB
收藏 版權(quán)申訴 舉報 下載
2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)16 不等式選講 文_第1頁
第1頁 / 共4頁
2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)16 不等式選講 文_第2頁
第2頁 / 共4頁
2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)16 不等式選講 文_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

16 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)16 不等式選講 文》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)16 不等式選講 文(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題限時集訓(xùn)(十六) 選修4-5 不等式選講 (建議用時:40分鐘) 1.(2019·咸陽三模)設(shè)函數(shù)f(x)=|2x-4|+1. (1)求不等式f(x)≥x+3的解集; (2)關(guān)于x的不等式f(x)-2|x+2|≥a在實數(shù)范圍內(nèi)有解,求實數(shù)a的取值范圍. [解] (1)f(x)≥x+3,即|2x-4|+1≥x+3, 則2|x-2|≥x+2, 當(dāng)x≥2時,解得x≥6, 當(dāng)x<2時,解得x≤, 所以原不等式的解集為∪[6,+∞). (2)由不等式f(x)-2|x+2|≥a在實數(shù)范圍內(nèi)有解可得:a≤2|x-2|-2|x+2|+1在實數(shù)范圍內(nèi)有解, 令g(x)=2|x-2|-2

2、|x+2|+1,則a≤g(x)min, 因為g(x)=2|x-2|-2|x+2|+1≥2|(x-2)-(x+2)|+1=9, 所以a≤g(x)min=9,即a∈(-∞,9]. 2.(2019·鄭州二模)設(shè)函數(shù)f(x)=|ax+1|+|x-a|(a>0),g(x)=x2-x. (1)當(dāng)a=1時,求不等式g(x)≥f(x)的解集; (2)已知f(x)≥2恒成立,求a的取值范圍. [解] (1)當(dāng)a=1時,g(x)≥f(x)? 或或 解得x≤-1或x≥3, 所以原不等式的解集為{x|x≤-1或x≥3}. (2)f(x)= 當(dāng)0

3、a=1; 當(dāng)a>1時,f(x)min=f=a+>2,a>1, 綜上,a的取值范圍是[1,+∞). 3.(2019·濰坊二模)已知函數(shù)f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}. (1)求實數(shù)a的值; (2)設(shè)g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實數(shù)t的取值范圍. [解] (1)由|ax-2|≤4得-4≤ax-2≤4,即-2≤ax≤6, 當(dāng)a>0時,-≤x≤,所以解得a=1; 當(dāng)a<0時,≤x≤-,所以無解, 所以實數(shù)a的值為1. (2)由已知g(x)=f(x)+f(x+3)=|x+1|+|x-2|= 不等

4、式g(x)-tx≤2,即g(x)≤tx+2, 由題意知y=g(x)的圖象有一部分在直線y=tx+2的下方,作出對應(yīng)圖象: 由圖可知,當(dāng)t<0時,t≤kEM;當(dāng)t>0時,t≥kFM, 又因為kEM=-1,kFM=, 所以t≤-1或t≥, 即t∈(-∞,-1]∪. 4.(2019·全國卷Ⅲ)設(shè)x,y,z∈R,且x+y+z=1. (1)求(x-1)2+(y+1)2+(z+1)2的最小值; (2)若(x-2)2+(y-1)2+(z-a)2≥成立,證明:a≤-3或a≥-1. [解] (1)因為[(x-1)+(y+1)+(z+1)]2 =(x-1)2+(y+1)2+(z+1)2+2

5、[(x-1)(y+1)+(y+1)·(z+1)+(z+1)(x-1)] ≤3[(x-1)2+(y+1)2+(z+1)2], 所以由已知得(x-1)2+(y+1)2+(z+1)2≥, 當(dāng)且僅當(dāng)x=,y=-,z=-時等號成立. 所以(x-1)2+(y+1)2+(z+1)2的最小值為. (2)證明:因為[(x-2)+(y-1)+(z-a)]2 =(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)] ≤3[(x-2)2+(y-1)2+(z-a)2], 所以由已知得(x-2)2+(y-1)2+(z-a)2≥, 當(dāng)且僅當(dāng)x=,y

6、=,z=時等號成立. 所以(x-2)2+(y-1)2+(z-a)2的最小值為. 由題設(shè)知≥,解得a≤-3或a≥-1. 題號 內(nèi)容 押題依據(jù) 1 絕對值不等式的解法、不等式的證明 本題考查考生絕對值不等式的解法及用分析法證明不等式問題,考查了邏輯推理、數(shù)學(xué)運算等核心素養(yǎng) 2 絕對值不等式的解法與絕對值有關(guān)的函數(shù)最值問題 本題考查了絕對值不等式的解法及函數(shù)最值問題,考查分類討論思想、轉(zhuǎn)化思想及數(shù)學(xué)運算等核心素養(yǎng) 【押題1】 已知函數(shù)f(x)=|x+|-|2x+|+,M為不等式f(x)<0的解集. (1)求M; (2)證明:當(dāng)m,n∈M時,|mn+2|>|m+n|

7、. [解] (1)∵f(x)<0,∴|x+|-|2x+|+<0. 當(dāng)x<-時,不等式可化為-x-+(2x+)+<0,解得x<-,∴x<-; 當(dāng)-≤x≤-時,不等式可化為x++(2x+)+<0,解得x<-,無解; 當(dāng)x>-時,不等式可化為x+-(2x+)+<0,解得x>,∴x>. 綜上所述,M={x|x<-或x>}. (2)要證|mn+2|>|m+n|,即證|mn+2|2>2|m+n|2, 即證m2n2-2m2-2n2+4>0,即證(m2-2)(n2-2)>0. 由(1)知,M={x|x<-或x>},且m,n∈M,∴m2>2,n2>2, ∴(m2-2)(n2-2)>0成立,故|mn+2|>|m+n|得證. 【押題2】 設(shè)函數(shù)f(x)=|ax+1|. (1)當(dāng)a=1時,解不等式f(x)+2x>2; (2)當(dāng)a>1時,設(shè)g(x)=f(x)+|x+1|,若g(x)的最小值為,求實數(shù)a的值. [解] (1)當(dāng)a=1時,f(x)+2x>2,即|x+1|>2-2x,所以或解得x>, 故原不等式的解集為. (2)當(dāng)a>1時,-1<-, g(x)=f(x)+|x+1|= 由于函數(shù)g(x)在上遞減,在上遞增,則g(x)min=g=1-,從而1-=,得a=2. - 4 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!