影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2021版高考數(shù)學一輪復習 第九章 平面解析幾何 第8講 曲線與方程練習 理 北師大版

上傳人:Sc****h 文檔編號:116810979 上傳時間:2022-07-06 格式:DOC 頁數(shù):10 大?。?.49MB
收藏 版權申訴 舉報 下載
2021版高考數(shù)學一輪復習 第九章 平面解析幾何 第8講 曲線與方程練習 理 北師大版_第1頁
第1頁 / 共10頁
2021版高考數(shù)學一輪復習 第九章 平面解析幾何 第8講 曲線與方程練習 理 北師大版_第2頁
第2頁 / 共10頁
2021版高考數(shù)學一輪復習 第九章 平面解析幾何 第8講 曲線與方程練習 理 北師大版_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2021版高考數(shù)學一輪復習 第九章 平面解析幾何 第8講 曲線與方程練習 理 北師大版》由會員分享,可在線閱讀,更多相關《2021版高考數(shù)學一輪復習 第九章 平面解析幾何 第8講 曲線與方程練習 理 北師大版(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第8講 曲線與方程 [基礎題組練] 1.方程(x-y)2+(xy-1)2=0表示的曲線是(  ) A.一條直線和一條雙曲線 B.兩條雙曲線 C.兩個點 D.以上答案都不對 解析:選C.(x-y)2+(xy-1)2=0? 故或 2.(2020·銀川模擬)設D為橢圓+x2=1上任意一點,A(0,-2),B(0,2),延長AD至點P,使得|PD|=|BD|,則點P的軌跡方程為(  ) A.x2+(y-2)2=20 B.x2+(y+2)2=20 C.x2+(y-2)2=5 D.x2+(y+2)2=5 解析:選B.設點P坐標為(x,y).因為D為橢圓+x2=1上任意一點,且

2、A,B為橢圓的焦點,所以|DA|+|DB|=2.又|PD|=|BD|,所以|PA|=|PD|+|DA|=|DA|+|DB|=2,所以=2,所以x2+(y+2)2=20,所以點P的軌跡方程為x2+(y+2)2=20.故選B. 3.如圖所示,在平面直角坐標系xOy中,A(1,0),B(1,1),C(0,1),映射f將xOy平面上的點P(x,y)對應到另一個平面直角坐標系uO′v上的點P′(2xy,x2-y2),則當點P沿著折線A-B-C運動時,在映射f的作用下,動點P′的軌跡是(  ) 解析:選D.當P沿AB運動時,x=1,設P′(x′,y′),則(0≤y≤1),故y′=1-(0≤x′

3、≤2,0≤y′≤1).當P沿BC運動時,y=1,則(0≤x≤1),所以y′=-1(0≤x′≤2,-1≤y′≤0),由此可知P′的軌跡如D項圖象所示,故選D. 4.(2020·蘭州模擬)已知兩點M(-2,0),N(2,0),點P為坐標平面內(nèi)的動點,滿足||·||+·=0,則動點P(x,y)的軌跡方程為(  ) A.y2=-8x        B.y2=8x C.y2=-4x D.y2=4x 解析:選A.設P(x,y),M(-2,0),N(2,0),||=4.則=(x+2,y),=(x-2,y),由||·||+·=0,得4+4(x-2)=0,化簡整理得y2=-8x.故選A. 5.(20

4、20·鄭州模擬)動點M在圓x2+y2=25上移動,過點M作x軸的垂線段MD,D為垂足,則線段MD中點的軌跡方程是(  ) A.+=1 B.+=1 C.-=1 D.-=1 解析:選B.如圖,設線段MD中點為P(x,y),M(x0,y0),D(x0,0),因為P是MD的中點, 所以又M在圓x2+y2=25上,所以x+y=25,即x2+4y2=25,+=1,所以線段MD的中點P的軌跡方程是+=1.故選B. 6.在平面直角坐標系中,O為坐標原點,A(1,0),B(2,2),若點C滿足=+t(-),其中t∈R,則點C的軌跡方程是________. 解析:設C(x,y),則=(x,y)

5、,+t(-)=(1+t,2t),所以消去參數(shù)t得點C的軌跡方程為y=2x-2. 答案:y=2x-2 7.△ABC的頂點A(-5,0),B(5,0),△ABC的內(nèi)切圓圓心在直線x=3上,則頂點C的軌跡方程是________. 解析:如圖,△ABC與內(nèi)切圓的切點分別為G,E,F(xiàn). |AG|=|AE|=8,|BF|=|BG|=2,|CE|=|CF|, 所以|CA|-|CB|=8-2=6. 根據(jù)雙曲線定義,所求軌跡是以A,B為焦點,實軸長為6的雙曲線的右支,軌跡方程為-=1(x>3). 答案:-=1(x>3) 8.設F1,F(xiàn)2為橢圓+=1的左、右焦點,A為橢圓上任意一點,過焦點F1

6、向∠F1AF2的外角平分線作垂線,垂足為D,則點D的軌跡方程是________. 解析:由題意,延長F1D,F(xiàn)2A并交于點B,易證Rt△ABD≌Rt△AF1D,則|F1D|=|BD|,|F1A|=|AB|,又O為F1F2的中點,連接OD,則OD∥F2B,從而可知|OD|=|F2B|=(|AF1|+|AF2|)=2,設點D的坐標為(x,y),則x2+y2=4. 答案:x2+y2=4 9.如圖所示,已知圓A:(x+2)2+y2=1與點B(2,0),分別求出滿足下列條件的動點P的軌跡方程. (1)△PAB的周長為10; (2)圓P與圓A外切,且過B點(P為動圓圓心); (3)圓P

7、與圓A外切,且與直線x=1相切(P為動圓圓心). 解:(1)根據(jù)題意,知|PA|+|PB|+|AB|=10,即|PA|+|PB|=6>4=|AB|,故P點軌跡是橢圓,且2a=6,2c=4,即a=3,c=2,b=. 因此其軌跡方程為+=1(y≠0). (2)設圓P的半徑為r,則|PA|=r+1,|PB|=r, 因此|PA|-|PB|=1. 由雙曲線的定義知,P點的軌跡為雙曲線的右支, 且2a=1,2c=4,即a=,c=2,b=,因此其軌跡方程為4x2-y2=1. (3)依題意,知動點P到定點A的距離等于到定直線x=2的距離,故其軌跡為拋物線,且開口向左,p=4. 因此其軌跡方程為

8、y2=-8x. 10.(2020·寶雞模擬)已知動圓P恒過定點,且與直線x=-相切. (1)求動圓P圓心的軌跡M的方程; (2)在正方形ABCD中,AB邊在直線y=x+4上,另外C,D兩點在軌跡M上,求該正方形的面積. 解:(1)由題意得動圓P的圓心到點的距離與它到直線x=-的距離相等, 所以圓心P的軌跡是以為焦點,直線x=-為準線的拋物線,且p=,所以動圓P圓心的軌跡M的方程為y2=x. (2)由題意設CD邊所在直線方程為y=x+t. 聯(lián)立消去y,整理得x2+(2t-1)x+t2=0. 因為直線CD和拋物線交于兩點, 所以Δ=(2t-1)2-4t2=1-4t>0,解得t<.

9、 設C(x1,y1),D(x2,y2), 則x1+x2=1-2t,x1x2=t2. 所以|CD|= ==. 又直線AB與直線CD之間的距離為|AD|=,|AD|=|CD|, 所以=,解得t=-2或t=-6, 經(jīng)檢驗t=-2和t=-6都滿足Δ>0. 所以正方形邊長|AD|=3或|AD|=5, 所以正方形ABCD的面積S=18或S=50. [綜合題組練] 1.設過點P(x,y)的直線分別與x軸的正半軸和y軸的正半軸交于A,B兩點,點Q與點P關于y軸對稱,O為坐標原點.若=2,且·=1,則點P的軌跡方程是(  ) A.x2+3y2=1(x>0,y>0) B.x2-3y2=1

10、(x>0,y>0) C.3x2-y2=1(x>0,y>0) D.3x2+y2=1(x>0,y>0) 解析:選A.設A(a,0),B(0,b),a>0,b>0.由=2,得(x,y-b)=2(a-x,-y),即a=x>0,b=3y>0.點Q(-x,y),故由·=1,得(-x,y)·(-a,b)=1,即ax+by=1.將a=x,b=3y代入ax+by=1,得所求的軌跡方程為x2+3y2=1(x>0,y>0). 2.若曲線C上存在點M,使M到平面內(nèi)兩點A(-5,0),B(5,0)距離之差的絕對值為8,則稱曲線C為“好曲線”.以下曲線不是“好曲線”的是(  ) A.x+y=5 B.x2+y2

11、=9 C.+=1 D.x2=16y 解析:選B.因為M到平面內(nèi)兩點A(-5,0),B(5,0)距離之差的絕對值為8,所以M的軌跡是以A(-5,0),B(5,0)為焦點的雙曲線,方程為-=1. A項,直線x+y=5過點(5,0),滿足題意,為“好曲線”;B項,x2+y2=9的圓心為(0,0),半徑為3,與M的軌跡沒有交點,不滿足題意;C項,+=1的右頂點為(5,0),滿足題意,為“好曲線”;D項,方程代入-=1,可得y-=1,即y2-9y+9=0,所以Δ>0,滿足題意,為“好曲線”. 3.如圖,斜線段AB與平面α所成的角為60°,B為斜足,平面α上的動點P滿足∠PAB=30°,則點P的

12、軌跡是(  ) A.直線 B.拋物線 C.橢圓 D.雙曲線的一支 解析:選C.母線與中軸線夾角為30°,然后用平面α去截,使直線AB與平面α的夾角為60°,則截口為P的軌跡圖形,由圓錐曲線的定義可知,P的軌跡為橢圓.故選C. 4.(2020·四川成都石室中學模擬)已知兩定點F1(-1,0),F(xiàn)2(1,0)和一動點P,給出下列結論: ①若|PF1|+|PF2|=2,則點P的軌跡是橢圓; ②若|PF1|-|PF2|=1,則點P的軌跡是雙曲線; ③若=λ(λ>0,且λ≠1),則點P的軌跡是圓; ④若|PF1|·|PF2|=a2(a≠0),則點P的軌跡關于原點對稱; ⑤若

13、直線PF1與PF2的斜率之積為m(m≠0),則點P的軌跡是橢圓(除長軸兩端點). 其中正確的是________.(填序號) 解析:對于①,由于|PF1|+|PF2|=2=|F1F2|,所以點P的軌跡是線段F1F2,故①不正確. 對于②,由于|PF1|-|PF2|=1,故點P的軌跡是以F1,F(xiàn)2為焦點的雙曲線的右支,故②不正確. 對于③,設P(x,y),由題意得=λ,整理得(1-λ2)x2+(1-λ2)y2+(2+2λ2)x+1-λ2=0.因為λ>0,且λ≠1,所以x2+y2+x+=0,所以點P的軌跡是圓,故③正確. 對于④,設P(x,y),則|PF1|·|PF2|=·=a2.又點P(

14、x,y)關于原點的對稱點為P′(-x,-y),因為·=·=a2,所以點P′(-x,-y)也在曲線·=a2上,即點P的軌跡關于原點對稱,故④正確. 對于⑤,設P(x,y),則kPF1=,kPF2=,由題意得kPF1·kPF2=·==m(m≠0),整理得x2-=1,此方程不一定表示橢圓,故⑤不正確. 綜上,正確結論的序號是③④. 答案:③④ 5.(一題多解)(2020·東北三省四市一模)如圖,已知橢圓C:+=1的短軸端點分別為B1,B2,點M是橢圓C上的動點,且不與B1,B2重合,點N滿足NB1⊥MB1,NB2⊥MB2. (1)求動點N的軌跡方程; (2)求四邊形MB2NB1面積的

15、最大值. 解:(1)法一:設N(x,y),M(x0,y0)(x0≠0). 由題知B1(0,-3),B2(0,3), 所以kMB1=,kMB2=. 因為MB1⊥NB1,MB2⊥NB2, 所以直線NB1:y+3=-x,① 直線NB2:y-3=-x,② ①×②得y2-9=x2. 又因為+=1, 所以y2-9=x2=-2x2, 整理得動點N的軌跡方程為+=1(x≠0). 法二:設N(x,y),M(x0,y0)(x0≠0). 由題知B1(0,-3),B2(0,3), 所以kMB1=,kMB2=. 因為MB1⊥NB1,MB2⊥NB2, 所以直線NB1:y+3=-x,① 直線

16、NB2:y-3=-x,② 聯(lián)立①②,解得 又+=1, 所以x=-, 故代入+=1,得+=1. 所以動點N的軌跡方程為+=1(x≠0). 法三:設直線MB1:y=kx-3(k≠0), 則直線NB1:y=-x-3,① 直線MB1與橢圓C:+=1的交點M的坐標為. 則直線MB2的斜率為kMB2==-. 所以直線NB2:y=2kx+3.② 由①②得點N的軌跡方程為+=1(x≠0). (2)由(1)方法三得直線NB1:y=-x-3,① 直線NB2:y=2kx+3,② 聯(lián)立①②解得x=,即xN=,故四邊形MB2NB1的面積S=|B1B2|(|xM|+|xN|)=3×==≤,當且

17、僅當|k|=時,S取得最大值. 6.在平面直角坐標系xOy中取兩個定點A1(-,0),A2(,0),再取兩個動點N1(0,m),N2(0,n),且mn=2. (1)求直線A1N1與A2N2的交點M的軌跡C的方程; (2)過R(3,0)的直線與軌跡C交于P,Q兩點,過點P作PN⊥x軸且與軌跡C交于另一點N,F(xiàn)為軌跡C的右焦點,若=λ(λ>1),求證:=λ. 解:(1)依題意知,直線A1N1的方程為y=(x+),① 直線A2N2的方程為y=-(x-),② 設M(x,y)是直線A1N1與A2N2的交點,①×②得y2=-(x2-6), 又mn=2,整理得+=1.故點M的軌跡C的方程為+=

18、1. (2)證明:設過點R的直線l:x=ty+3,P(x1,y1),Q(x2,y2),則N(x1,-y1), 由消去x,得(t2+3)y2+6ty+3=0,(*) 所以y1+y2=-,y1y2=. 由=λ,得(x1-3,y1)=λ(x2-3,y2),故x1-3=λ(x2-3),y1=λy2, 由(1)得F(2,0),要證=λ,即證(2-x1,y1)=λ(x2-2,y2),  只需證2-x1=λ(x2-2),只需證=-,即證2x1x2-5(x1+x2)+12=0,又x1x2=(ty1+3)(ty2+3)=t2y1y2+3t(y1+y2)+9,x1+x2=ty1+3+ty2+3=t(y1+y2)+6,所以2t2y1y2+6t(y1+y2)+18-5t(y1+y2)-30+12=0,即2t2y1y2+t(y1+y2)=0, 而2t2y1y2+t(y1+y2)=2t2·-t·=0成立,得證. 10

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!