九年級(jí)數(shù)學(xué)上學(xué)期10月月考試卷(含解析) 蘇科版 (5)
《九年級(jí)數(shù)學(xué)上學(xué)期10月月考試卷(含解析) 蘇科版 (5)》由會(huì)員分享,可在線閱讀,更多相關(guān)《九年級(jí)數(shù)學(xué)上學(xué)期10月月考試卷(含解析) 蘇科版 (5)(34頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
江蘇省無錫市江陰二中學(xué)2016-2017學(xué)年九年級(jí)(上)月考數(shù)學(xué)試卷(10月份) 一、選擇題 1.若2m=3n,則下列比例式中不正確的是( ) A. B. C. D. 2.若=,則的值為( ) A.1 B. C. D. 3.如圖,在△ABC中,點(diǎn)D、E分AB、AC邊上,DE∥BC,若AD:AB=3:4,AE=6,則AC等于( ?。? A.3 B.4 C.6 D.8 4.如圖,四邊形ABCD的對(duì)角線AC、BD相交于O,且將這個(gè)四邊形分成①、②、③、④四個(gè)三角形.若OA:OC=OB:OD,則下列結(jié)論中一定正確的是( ?。? A.①與②相似 B.①與③相似 C.①與④相似 D.②與④相似 5.如圖,在四邊形ABCD中,E是AB上一點(diǎn),EC∥AD,DE∥BC,若S△BEC=1,S△ADE=3,則S△CDE等于( ?。? A. B. C. D.2 6.在△ABC中,∠C=90,如果tanA=,那么sinB的值等于( ?。? A. B. C. D. 7.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,6),B(﹣9,﹣3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( ?。? A.(﹣1,2) B.(﹣9,18) C.(﹣9,18)或(9,﹣18) D.(﹣1,2)或(1,﹣2) 8.有3個(gè)正方形如圖所示放置,陰影部分的面積依次記為S1,S2,則S1:S2等于( ) A.1: B.1:2 C.2:3 D.4:9 9.如圖,D、E分別是△ABC的邊AB、BC上的點(diǎn),且DE∥AC,AE、CD相交于點(diǎn)O,若S△DOE:S△COA=1:25,則S△BDE與S△CDE的比是( ?。? A.1:3 B.1:4 C.1:5 D.1:25 10.如圖,在△ABC中,AD和BE是高,∠ABE=45,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的有( ?。? A.1個(gè) B.2 個(gè) C.3 個(gè) D.4個(gè) 二、填空題 11.若兩個(gè)相似三角形的周長(zhǎng)比為2:3,則它們的面積比是 . 12.如圖,△ABC中,D為BC上一點(diǎn),∠BAD=∠C,AB=6,BD=4,則CD的長(zhǎng)為 ?。? 13.如圖,△ABC中∠A=30,tanB=,AC=,則AB= ?。? 14.若方程x2﹣3x+m=0的一個(gè)根是另一個(gè)根的2倍,則m= . 15.如圖所示,在△ABC中,BC=6,E、F分別是AB、AC的中點(diǎn),動(dòng)點(diǎn)P在射線EF上,BP交CE于D,∠CBP的平分線交CE于Q,當(dāng)CQ=CE時(shí),EP+BP= ?。? 16.如圖,已知△ABC中,∠ABC=90,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線l1,l2,l3,上,且l1,l2之間的距離為2,l2,l3之間的距離為3,則AC的長(zhǎng)是 ?。? 17.已知:在平行四邊形ABCD中,點(diǎn)E在直線AD上,AE=AD,連接CE交BD于點(diǎn)F,則EF:FC的值是 ?。? 18.如圖,在平面直角坐標(biāo)系xOy中,直線y=x+3與坐標(biāo)軸交于A、B兩點(diǎn),坐標(biāo)平面內(nèi)有一點(diǎn)P(m,3),若以P、B、O三點(diǎn)為頂點(diǎn)的三角形與△AOB相似,則m= ?。? 三、解答題 19.(12分)(1)計(jì)算:(﹣)﹣1﹣2+(3.14﹣π)0sin30. (2)先化簡(jiǎn),再求值:(﹣a﹣2b)﹣,其中a,b滿足 (3)解方程:﹣=0. 20.(6分)已知:如圖△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度. (1)畫出△ABC向上平移6個(gè)單位得到的△A1B1C1; (2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo). 21.(10分)已知關(guān)于x的一元二次方程x2﹣6x+(2m+1)=0有實(shí)數(shù)根. (1)求m的取值范圍; (2)如果方程的兩個(gè)實(shí)數(shù)根為x1,x2,且2x1x2+x1+x2≥20,求m的取值范圍. 22.(10分)如圖,正方形ABCD中,M為BC上一點(diǎn),F(xiàn)是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N. (1)求證:△ABM∽△EFA; (2)若AB=12,BM=5,求DE的長(zhǎng). 23.(10分)如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D,E,AD與BE相交于點(diǎn)F. (1)求證:△ACD∽△BFD; (2)當(dāng)tan∠ABD=1,AC=3時(shí),求BF的長(zhǎng). 24.(10分)如圖,在四邊形ABCD中,AB=AD,AC與BD交于點(diǎn)E,∠ADB=∠ACB. (1)求證: =; (2)若AB⊥AC,AE:EC=1:2,F(xiàn)是BC中點(diǎn),求證:四邊形ABFD是菱形. 25.(10分)學(xué)習(xí)投影后,小明、小穎利用燈光下自己的影子長(zhǎng)度來測(cè)量一路燈的高度,并探究影子長(zhǎng)度的變化規(guī)律.如圖,在同一時(shí)間,身高為1.6m的小明(AB)的影子BC長(zhǎng)是3m,而小穎(EH)剛好在路燈燈泡的正下方H點(diǎn),并測(cè)得HB=6m. (1)請(qǐng)?jiān)趫D中畫出形成影子的光線,并確定路燈燈泡所在的位置G; (2)求路燈燈泡的垂直高度GH; (3)如果小明沿線段BH向小穎(點(diǎn)H)走去,當(dāng)小明走到BH中點(diǎn)B1處時(shí),其影子長(zhǎng)為B1C1;當(dāng)小明繼續(xù)走剩下路程的到B2處時(shí),其影子長(zhǎng)為B2C2;當(dāng)小明繼續(xù)走剩下路程的到B3處,…,按此規(guī)律繼續(xù)走下去,當(dāng)小明走剩下路程的到Bn處時(shí),其影子BnCn的長(zhǎng)為 m.(直接用n的代數(shù)式表示) 26.(16分)如圖所示,在平面直角坐標(biāo)系中,過點(diǎn)A(﹣,0)的兩條直線分別交y軸于B、C兩點(diǎn),且B、C兩點(diǎn)的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個(gè)根 (1)求線段BC的長(zhǎng)度; (2)試問:直線AC與直線AB是否垂直?請(qǐng)說明理由; (3)若點(diǎn)D在直線AC上,且DB=DC,求點(diǎn)D的坐標(biāo); (4)在(3)的條件下,直線BD上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由. 2016-2017學(xué)年江蘇省無錫市江陰二中學(xué)九年級(jí)(上)月考數(shù)學(xué)試卷(10月份) 參考答案與試題解析 一、選擇題 1.若2m=3n,則下列比例式中不正確的是( ?。? A. B. C. D. 【考點(diǎn)】比例的性質(zhì). 【分析】根據(jù)比例的性質(zhì)內(nèi)項(xiàng)之積等于外項(xiàng)之積,即可判斷. 【解答】解:∵2m=3n, ∴=或=或=, 故選C. 【點(diǎn)評(píng)】本題考查比例的性質(zhì),記住比例的性質(zhì)內(nèi)項(xiàng)之積等于外項(xiàng)之積是解題的關(guān)鍵. 2.若=,則的值為( ) A.1 B. C. D. 【考點(diǎn)】比例的性質(zhì). 【分析】根據(jù)合分比性質(zhì)求解. 【解答】解:∵ =, ∴==. 故選D. 【點(diǎn)評(píng)】考查了比例性質(zhì):常見比例的性質(zhì)有內(nèi)項(xiàng)之積等于外項(xiàng)之積;合比性質(zhì);分比性質(zhì);合分比性質(zhì);等比性質(zhì). 3.如圖,在△ABC中,點(diǎn)D、E分AB、AC邊上,DE∥BC,若AD:AB=3:4,AE=6,則AC等于( ) A.3 B.4 C.6 D.8 【考點(diǎn)】平行線分線段成比例. 【分析】首先由DE∥BC可以得到AD:AB=AE:AC,而AD:AB=3:4,AE=6,由此即可求出AC. 【解答】解:∵DE∥BC, ∴△ADE∽△ABC, ∴AD:AB=AE:AC, 而AD:AB=3:4,AE=6, ∴3:4=6:AC, ∴AC=8. 故選D. 【點(diǎn)評(píng)】本題主要考查平行線分線段成比例定理,對(duì)應(yīng)線段一定要找準(zhǔn)確,有的同學(xué)因?yàn)闆]有找準(zhǔn)對(duì)應(yīng)關(guān)系,從而導(dǎo)致錯(cuò)選其他答案. 4.如圖,四邊形ABCD的對(duì)角線AC、BD相交于O,且將這個(gè)四邊形分成①、②、③、④四個(gè)三角形.若OA:OC=OB:OD,則下列結(jié)論中一定正確的是( ?。? A.①與②相似 B.①與③相似 C.①與④相似 D.②與④相似 【考點(diǎn)】相似三角形的判定. 【分析】根據(jù)兩邊及其夾角法:兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似可得①與③相似. 【解答】解:∵OA:OC=OB:OD,∠AOB=∠COD, ∴△AOB∽△COD, 故選:B. 【點(diǎn)評(píng)】此題主要考查了相似三角形的判定,關(guān)鍵是掌握相似三角形的判定定理. 5.如圖,在四邊形ABCD中,E是AB上一點(diǎn),EC∥AD,DE∥BC,若S△BEC=1,S△ADE=3,則S△CDE等于( ) A. B. C. D.2 【考點(diǎn)】相似三角形的判定與性質(zhì);平行四邊形的性質(zhì). 【分析】由題意在四邊形ABCD中延長(zhǎng)AD、BC交于F,則BECF為平行四邊形,然后根據(jù)相似三角形面積之比等于邊長(zhǎng)比的平方來求解. 【解答】解:延長(zhǎng)AD、BC交于F,則DECF為平行四邊形, ∵EC∥AD,DE∥BC, ∴∠ADE=∠DEC=∠BCE,∠CBE=∠AED, ∴△CBE∽△DEA, 又∵S△BEC=1,S△ADE=3, ∴==, ∵CEDF為平行四邊形, ∴△CDE≌△DCF, ∴S?CEDF=2S△CDE, ∵EC∥AD, ∴△BCE∽△BFA, ∴=,S△BCE:S△BFA=()2,即1:(1+3+2S△CDE)=, 解得:S△CDE=. 故選C. 【點(diǎn)評(píng)】解答此題的關(guān)鍵是根據(jù)平行于三角形一邊的直線截得的三角形與原三角形相似及相似三角形的性質(zhì)來解答. 6.在△ABC中,∠C=90,如果tanA=,那么sinB的值等于( ) A. B. C. D. 【考點(diǎn)】銳角三角函數(shù)的定義. 【分析】先根據(jù)題意設(shè)出直角三角形的兩直角邊,根據(jù)勾股定理求出其斜邊;再根據(jù)直角三角形中銳角三角函數(shù)的定義求解即可. 【解答】解:∵在△ABC中,∠C=90,tanA=, ∴設(shè)BC=5x,則AC=12x, ∴AB=13x,sinB==. 故選B. 【點(diǎn)評(píng)】本題考查銳角三角函數(shù)的定義及運(yùn)用:在直角三角形中,銳角的正弦為對(duì)邊比斜邊,余弦為鄰邊比斜邊,正切為對(duì)邊比鄰邊. 7.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,6),B(﹣9,﹣3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( ?。? A.(﹣1,2) B.(﹣9,18) C.(﹣9,18)或(9,﹣18) D.(﹣1,2)或(1,﹣2) 【考點(diǎn)】位似變換;坐標(biāo)與圖形性質(zhì). 【分析】利用位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或﹣k進(jìn)行求解. 【解答】解:∵A(﹣3,6),B(﹣9,﹣3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小, ∴點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為(﹣3,6)或[﹣3(﹣),6(﹣)],即A′點(diǎn)的坐標(biāo)為(﹣1,2)或(1,﹣2). 故選D. 【點(diǎn)評(píng)】本題考查了位似變換:在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或﹣k. 8.有3個(gè)正方形如圖所示放置,陰影部分的面積依次記為S1,S2,則S1:S2等于( ?。? A.1: B.1:2 C.2:3 D.4:9 【考點(diǎn)】正方形的性質(zhì). 【分析】設(shè)小正方形的邊長(zhǎng)為x,再根據(jù)相似的性質(zhì)求出S1、S2與正方形面積的關(guān)系,然后進(jìn)行計(jì)算即可得出答案. 【解答】解:設(shè)小正方形的邊長(zhǎng)為x,根據(jù)圖形可得: ∵=, ∴=, ∴=, ∴S1=S正方形ABCD, ∴S1=x2, ∵=, ∴=, ∴S2=S正方形ABCD, ∴S2=x2, ∴S1:S2=x2: x2=4:9; 故選D. 【點(diǎn)評(píng)】此題考查了正方形的性質(zhì),用到的知識(shí)點(diǎn)是正方形的性質(zhì)、相似三角形的性質(zhì)、正方形的面積公式,關(guān)鍵是根據(jù)題意求出S1、S2與正方形面積的關(guān)系. 9.如圖,D、E分別是△ABC的邊AB、BC上的點(diǎn),且DE∥AC,AE、CD相交于點(diǎn)O,若S△DOE:S△COA=1:25,則S△BDE與S△CDE的比是( ) A.1:3 B.1:4 C.1:5 D.1:25 【考點(diǎn)】相似三角形的判定與性質(zhì). 【分析】根據(jù)相似三角形的判定定理得到△DOE∽△COA,根據(jù)相似三角形的性質(zhì)定理得到=, ==,結(jié)合圖形得到=,得到答案. 【解答】解:∵DE∥AC, ∴△DOE∽△COA,又S△DOE:S△COA=1:25, ∴=, ∵DE∥AC, ∴==, ∴=, ∴S△BDE與S△CDE的比是1:4, 故選:B. 【點(diǎn)評(píng)】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)鍵. 10.如圖,在△ABC中,AD和BE是高,∠ABE=45,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的有( ) A.1個(gè) B.2 個(gè) C.3 個(gè) D.4個(gè) 【考點(diǎn)】相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì). 【分析】由直角三角形斜邊上的中線性質(zhì)得出FD=AB,證明△ABE是等腰直角三角形,得出AE=BE,證出FE=AB,延長(zhǎng)FD=FE,①正確; 證出∠ABC=∠C,得出AB=AC,由等腰三角形的性質(zhì)得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA證明△AEH≌△BEC,得出AH=BC=2CD,②正確; 證明△ABD~△BCE,得出=,即BC?AD=AB?BE,再由等腰直角三角形的性質(zhì)和三角形的面積得出BC?AD=AE2;③正確; 由F是AB的中點(diǎn),BD=CD,得出S△ABC=2S△ABD=4S△ADF.④正確;即可得出結(jié)論. 【解答】解:∵在△ABC中,AD和BE是高, ∴∠ADB=∠AEB=∠CEB=90, ∵點(diǎn)F是AB的中點(diǎn), ∴FD=AB, ∵∠ABE=45, ∴△ABE是等腰直角三角形, ∴AE=BE, ∵點(diǎn)F是AB的中點(diǎn), ∴FE=AB, ∴FD=FE,①正確; ∵∠CBE=∠BAD,∠CBE+∠C=90,∠BAD+∠ABC=90, ∴∠ABC=∠C, ∴AB=AC, ∵AD⊥BC, ∴BC=2CD,∠BAD=∠CAD=∠CBE, 在△AEH和△BEC中,, ∴△AEH≌△BEC(ASA), ∴AH=BC=2CD,②正確; ∵∠BAD=∠CBE,∠ADB=∠CEB, ∴△ABD~△BCE, ∴=,即BC?AD=AB?BE, ∵AE2=AB?AE=AB?BE,BC?AD=AC?BE=AB?BE, ∴BC?AD=AE2;③正確; ∵F是AB的中點(diǎn),BD=CD,∴ S△ABC=2S△ABD=4S△ADF.④正確; 故選:D. 【點(diǎn)評(píng)】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、直角三角形斜邊上的中線性質(zhì)、等腰三角形的判定與性質(zhì);本題綜合性強(qiáng),有一定難度,證明三角形相似和三角形全等是解決問題的關(guān)鍵. 二、填空題 11.若兩個(gè)相似三角形的周長(zhǎng)比為2:3,則它們的面積比是 4:9 . 【考點(diǎn)】相似三角形的性質(zhì). 【分析】根據(jù)相似三角形周長(zhǎng)的比等于相似比求出相似比,再根據(jù)相似三角形面積的比等于相似比的平方求解即可. 【解答】解:∵兩個(gè)相似三角形的周長(zhǎng)比為2:3, ∴這兩個(gè)相似三角形的相似比為2:3, ∴它們的面積比是4:9. 故答案為:4:9. 【點(diǎn)評(píng)】本題考查了相似三角形的性質(zhì),是基礎(chǔ)題,熟記性質(zhì)是解題的關(guān)鍵. 12.如圖,△ABC中,D為BC上一點(diǎn),∠BAD=∠C,AB=6,BD=4,則CD的長(zhǎng)為 5 . 【考點(diǎn)】相似三角形的判定與性質(zhì). 【分析】易證△BAD∽△BCA,然后運(yùn)用相似三角形的性質(zhì)可求出BC,從而可得到CD的值. 【解答】解:∵∠BAD=∠C,∠B=∠B, ∴△BAD∽△BCA, ∴=. ∵AB=6,BD=4, ∴=, ∴BC=9, ∴CD=BC﹣BD=9﹣4=5. 故答案為5. 【點(diǎn)評(píng)】本題主要考查的是相似三角形的判定與性質(zhì),由角等聯(lián)想到三角形相似是解決本題的關(guān)鍵. 13.如圖,△ABC中∠A=30,tanB=,AC=,則AB= 5 . 【考點(diǎn)】解直角三角形. 【分析】過C作CD⊥AB于D,根據(jù)含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案. 【解答】解: 過C作CD⊥AB于D, 則∠ADC=∠BDC=90, ∵∠A=30,AC=2, ∴CD=AC=,由勾股定理得:AD=CD=3, ∵tanB==, ∴BD=2, ∴AB=2+3=5, 故答案為:5. 【點(diǎn)評(píng)】本題考查了勾股定理,解直角三角形,含30度角的直角三角形的性質(zhì)的應(yīng)用,關(guān)鍵是能正確構(gòu)造直角三角形. 14.若方程x2﹣3x+m=0的一個(gè)根是另一個(gè)根的2倍,則m= 2?。? 【考點(diǎn)】根與系數(shù)的關(guān)系. 【分析】設(shè)方程的兩個(gè)為a、b,且a=2b,根據(jù)a+b=3可求出a、b的值,將其代入m=ab即可得出結(jié)論. 【解答】解:設(shè)方程的兩個(gè)為a、b,且a=2b, ∵a+b=3b=3, ∴b=1,a=2, m=ab=2. 故答案為:2. 【點(diǎn)評(píng)】本題考查了根與系數(shù)的關(guān)系,根據(jù)根與系數(shù)的關(guān)系找出a+b=3、ab=m是解題的關(guān)鍵. 15.如圖所示,在△ABC中,BC=6,E、F分別是AB、AC的中點(diǎn),動(dòng)點(diǎn)P在射線EF上,BP交CE于D,∠CBP的平分線交CE于Q,當(dāng)CQ=CE時(shí),EP+BP= 12?。? 【考點(diǎn)】相似三角形的判定與性質(zhì);等腰三角形的判定與性質(zhì);三角形中位線定理. 【分析】延長(zhǎng)BQ交射線EF于M,根據(jù)三角形的中位線平行于第三邊可得EF∥BC,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠M=∠CBM,再根據(jù)角平分線的定義可得∠PBM=∠CBM,從而得到∠M=∠PBM,根據(jù)等角對(duì)等邊可得BP=PM,求出EP+BP=EM,再根據(jù)CQ=CE求出EQ=2CQ,然后根據(jù)△MEQ和△BCQ相似,利用相似三角形對(duì)應(yīng)邊成比例列式求解即可. 【解答】解:如圖,延長(zhǎng)BQ交射線EF于M, ∵E、F分別是AB、AC的中點(diǎn), ∴EF∥BC, ∴∠M=∠CBM, ∵BQ是∠CBP的平分線, ∴∠PBM=∠CBM, ∴∠M=∠PBM, ∴BP=PM, ∴EP+BP=EP+PM=EM, ∵CQ=CE, ∴EQ=2CQ, 由EF∥BC得,△MEQ∽△BCQ, ∴==2, ∴EM=2BC=26=12, 即EP+BP=12. 故答案為:12. 【點(diǎn)評(píng)】本題考查了相似三角形的判定與性質(zhì),角平分線的定義,平行線的性質(zhì),延長(zhǎng)BQ構(gòu)造出相似三角形,求出EP+BP=EM并得到相似三角形是解題的關(guān)鍵,也是本題的難點(diǎn). 16.如圖,已知△ABC中,∠ABC=90,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線l1,l2,l3,上,且l1,l2之間的距離為2,l2,l3之間的距離為3,則AC的長(zhǎng)是 ?。? 【考點(diǎn)】全等三角形的判定與性質(zhì);平行線之間的距離;等腰直角三角形. 【分析】過A、C點(diǎn)作l3的垂線構(gòu)造出直角三角形,根據(jù)三角形全等和勾股定理求出BC的長(zhǎng),再利用勾股定理即可求出. 【解答】解:作AD⊥l3于D,作CE⊥l3于E, ∵∠ABC=90, ∴∠ABD+∠CBE=90, 又∵∠DAB+∠ABD=90, ∴∠BAD=∠CBE, 又∵AB=BC,∠ADB=∠BEC, 在△ABD與△BCE中, , ∴△ABD≌△BCE(AAS), ∴BE=AD=3,CE=2+3=5, 在Rt△BCE中,根據(jù)勾股定理,得BC=, 在Rt△ABC中,根據(jù)勾股定理,得AC=, 故答案為: 【點(diǎn)評(píng)】本題考查了全等三角形的判定與性質(zhì):判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對(duì)應(yīng)邊相等. 17.已知:在平行四邊形ABCD中,點(diǎn)E在直線AD上,AE=AD,連接CE交BD于點(diǎn)F,則EF:FC的值是 或?。? 【考點(diǎn)】相似三角形的判定與性質(zhì);平行四邊形的性質(zhì). 【分析】分兩種情況:①當(dāng)點(diǎn)E在線段AD上時(shí),由四邊形ABCD是平行四邊形,可證得△EFD∽△CFB,求出DE:BC=2:3,即可求得EF:FC的值; ②當(dāng)點(diǎn)E在射線DA上時(shí),同①得:△EFD∽△CFB,求出DE:BC=4:3,即可求得EF:FC的值. 【解答】解:∵AE=AD, ∴分兩種情況: ①當(dāng)點(diǎn)E在線段AD上時(shí),如圖1所示 ∵四邊形ABCD是平行四邊形, ∴AD∥BC,AD=BC, ∴△EFD∽△CFB, ∴EF:FC=DE:BC, ∵AE=AD, ∴DE=2AE=AD=BC, ∴DE:BC=2:3, ∴EF:FC=2:3; ②當(dāng)點(diǎn)E在線段DA的延長(zhǎng)線上時(shí),如圖2所示: 同①得:△EFD∽△CFB, ∴EF:FC=DE:BC, ∵AE=AD, ∴DE=4AE=AD=BC, ∴DE:BC=4:3, ∴EF:FC=4:3; 綜上所述:EF:FC的值是或; 故答案為:或. 【點(diǎn)評(píng)】此題考查了相似三角形的判定與性質(zhì)與平行四邊形的性質(zhì).此題難度不大,證明三角形相似是解決問題的關(guān)鍵;注意分情況討論. 18.如圖,在平面直角坐標(biāo)系xOy中,直線y=x+3與坐標(biāo)軸交于A、B兩點(diǎn),坐標(biāo)平面內(nèi)有一點(diǎn)P(m,3),若以P、B、O三點(diǎn)為頂點(diǎn)的三角形與△AOB相似,則m= 4或?。? 【考點(diǎn)】相似三角形的性質(zhì);一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征. 【分析】由在平面直角坐標(biāo)系xOy中,直線y=x+3與坐標(biāo)軸交于A、B兩點(diǎn),可求得A與B的坐標(biāo),又由坐標(biāo)平面內(nèi)有一點(diǎn)P(m,3),可得∠AOB=∠OBP=90,然后分別從當(dāng)=時(shí),△AOB∽△PBO,與當(dāng)=時(shí),△AOB∽△OBP,去分析求解即可求得答案. 【解答】解:∵直線y=x+3與坐標(biāo)軸交于A、B兩點(diǎn), ∴點(diǎn)A(﹣4,0),點(diǎn)B(0,3), ∵P(m,3), ∵∠AOB=∠OBP=90, ∴當(dāng)=時(shí),△AOB∽△PBO, ∴BP=OA=4, ∴m=4; 當(dāng)=時(shí),△AOB∽△OBP, ∴BP==, ∴m=. 故答案為:4或. 【點(diǎn)評(píng)】此題考查了相似三角形的性質(zhì).注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵. 三、解答題 19.(12分)(2016秋?江陰市校級(jí)月考)(1)計(jì)算:(﹣)﹣1﹣2+(3.14﹣π)0sin30. (2)先化簡(jiǎn),再求值:(﹣a﹣2b)﹣,其中a,b滿足 (3)解方程:﹣=0. 【考點(diǎn)】解分式方程;實(shí)數(shù)的運(yùn)算;分式的化簡(jiǎn)求值;零指數(shù)冪;負(fù)整數(shù)指數(shù)冪;解二元一次方程組;特殊角的三角函數(shù)值. 【分析】(1)原式利用零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,以及特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果; (2)原式括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則變形,同時(shí)利用除法法則變形,約分后兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算得到最簡(jiǎn)結(jié)果,求出方程組的解得到a與b的值,代入計(jì)算即可求出值; (3)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解. 【解答】解:(1)原式=﹣3﹣+=﹣3; (2)原式=﹣=?﹣=﹣﹣==﹣, 方程組, ①+②得:2a=6,即a=3, ①﹣②得:2b=2,即b=1, 則原式=﹣; (3)去分母得:3x﹣6﹣x﹣2=0, 解得:x=4, 經(jīng)檢驗(yàn)x=4是分式方程的解. 【點(diǎn)評(píng)】此題考查了解分式方程,實(shí)數(shù)的運(yùn)算,以及分式的化簡(jiǎn)求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵. 20.已知:如圖△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度. (1)畫出△ABC向上平移6個(gè)單位得到的△A1B1C1; (2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo). 【考點(diǎn)】作圖-位似變換;作圖-平移變換. 【分析】(1)直接利用平移的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案; (2)利用位似圖形的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出. 【解答】解:(1)如圖所示:△A1B1C1,即為所求; (2)如圖所示:△A2B2C2,即為所求,A2坐標(biāo)(﹣2,﹣2). 【點(diǎn)評(píng)】此題主要考查了位似變換和平移變換,根據(jù)題意正確得出對(duì)應(yīng)點(diǎn)位置是解題關(guān)鍵. 21.(10分)(2016?南充)已知關(guān)于x的一元二次方程x2﹣6x+(2m+1)=0有實(shí)數(shù)根. (1)求m的取值范圍; (2)如果方程的兩個(gè)實(shí)數(shù)根為x1,x2,且2x1x2+x1+x2≥20,求m的取值范圍. 【考點(diǎn)】根與系數(shù)的關(guān)系;根的判別式. 【分析】(1)根據(jù)判別式的意義得到△=(﹣6)2﹣4(2m+1)≥0,然后解不等式即可; (2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的結(jié)論可確定滿足條件的m的取值范圍. 【解答】解:(1)根據(jù)題意得△=(﹣6)2﹣4(2m+1)≥0, 解得m≤4; (2)根據(jù)題意得x1+x2=6,x1x2=2m+1, 而2x1x2+x1+x2≥20, 所以2(2m+1)+6≥20,解得m≥3, 而m≤4, 所以m的范圍為3≤m≤4. 【點(diǎn)評(píng)】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=﹣,x1x2=.也考查了根與系數(shù)的關(guān)系. 22.(10分)(2015?岳陽)如圖,正方形ABCD中,M為BC上一點(diǎn),F(xiàn)是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N. (1)求證:△ABM∽△EFA; (2)若AB=12,BM=5,求DE的長(zhǎng). 【考點(diǎn)】相似三角形的判定與性質(zhì);正方形的性質(zhì). 【分析】(1)由正方形的性質(zhì)得出AB=AD,∠B=90,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結(jié)論; (2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的長(zhǎng). 【解答】(1)證明:∵四邊形ABCD是正方形, ∴AB=AD,∠B=90,AD∥BC, ∴∠AMB=∠EAF, 又∵EF⊥AM, ∴∠AFE=90, ∴∠B=∠AFE, ∴△ABM∽△EFA; (2)解:∵∠B=90,AB=12,BM=5, ∴AM==13,AD=12, ∵F是AM的中點(diǎn), ∴AF=AM=6.5, ∵△ABM∽△EFA, ∴, 即, ∴AE=16.9, ∴DE=AE﹣AD=4.9. 【點(diǎn)評(píng)】本題考查了正方形的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理;熟練掌握正方形的性質(zhì),并能進(jìn)行推理計(jì)算是解決問題的關(guān)鍵. 23.(10分)(2016?齊齊哈爾)如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D,E,AD與BE相交于點(diǎn)F. (1)求證:△ACD∽△BFD; (2)當(dāng)tan∠ABD=1,AC=3時(shí),求BF的長(zhǎng). 【考點(diǎn)】相似三角形的判定與性質(zhì). 【分析】(1)由∠C+∠DBF=90,∠C+∠DAC=90,推出∠DBF=∠DAC,由此即可證明. (2)先證明AD=BD,由△ACD∽△BFD,得==1,即可解決問題. 【解答】(1)證明:∵AD⊥BC,BE⊥AC, ∴∠BDF=∠ADC=∠BEC=90, ∴∠C+∠DBF=90,∠C+∠DAC=90, ∴∠DBF=∠DAC, ∴△ACD∽△BFD. (2)∵tan∠ABD=1,∠ADB=90 ∴=1, ∴AD=BD, ∵△ACD∽△BFD, ∴==1, ∴BF=AC=3. 【點(diǎn)評(píng)】本題考查相似三角形的判定和性質(zhì)、三角函數(shù)等知識(shí),解題的關(guān)鍵是熟練掌握相似三角形的判定和性質(zhì),屬于中考??碱}型. 24.(10分)(2014?泰安)如圖,在四邊形ABCD中,AB=AD,AC與BD交于點(diǎn)E,∠ADB=∠ACB. (1)求證: =; (2)若AB⊥AC,AE:EC=1:2,F(xiàn)是BC中點(diǎn),求證:四邊形ABFD是菱形. 【考點(diǎn)】相似三角形的判定與性質(zhì);菱形的判定. 【分析】(1)利用相似三角形的判定得出△ABE∽△ACB,進(jìn)而求出答案; (2)首先證明AD=BF,進(jìn)而得出AD∥BF,即可得出四邊形ABFD是平行四邊形,再利用AD=AB,得出四邊形ABFD是菱形. 【解答】證明:(1)∵AB=AD, ∴∠ADB=∠ABE, 又∵∠ADB=∠ACB, ∴∠ABE=∠ACB, 又∵∠BAE=∠CAB, ∴△ABE∽△ACB, ∴=, 又∵AB=AD, ∴=; (2)設(shè)AE=x, ∵AE:EC=1:2, ∴EC=2x, 由(1)得:AB2=AE?AC,即AB2=x?3x ∴AB=x, 又∵BA⊥AC, ∴BC=2x, ∴∠ACB=30, ∵F是BC中點(diǎn), ∴BF=x, ∴BF=AB=AD, 連接AF,則AF=BF=CF,∠ACB=30,∠ABC=60, 又∵∠ABD=∠ADB=30, ∴∠CBD=30, ∴∠ADB=∠CBD=∠ACB=30, ∴AD∥BF, ∴四邊形ABFD是平行四邊形, 又∵AD=AB, ∴四邊形ABFD是菱形. 【點(diǎn)評(píng)】此題主要考查了相似三角形的判定與性質(zhì)以及菱形的判定等知識(shí),得出△ABE∽△ACB是解題關(guān)鍵. 25.(10分)(2016秋?江陰市校級(jí)月考)學(xué)習(xí)投影后,小明、小穎利用燈光下自己的影子長(zhǎng)度來測(cè)量一路燈的高度,并探究影子長(zhǎng)度的變化規(guī)律.如圖,在同一時(shí)間,身高為1.6m的小明(AB)的影子BC長(zhǎng)是3m,而小穎(EH)剛好在路燈燈泡的正下方H點(diǎn),并測(cè)得HB=6m. (1)請(qǐng)?jiān)趫D中畫出形成影子的光線,并確定路燈燈泡所在的位置G; (2)求路燈燈泡的垂直高度GH; (3)如果小明沿線段BH向小穎(點(diǎn)H)走去,當(dāng)小明走到BH中點(diǎn)B1處時(shí),其影子長(zhǎng)為B1C1;當(dāng)小明繼續(xù)走剩下路程的到B2處時(shí),其影子長(zhǎng)為B2C2;當(dāng)小明繼續(xù)走剩下路程的到B3處,…,按此規(guī)律繼續(xù)走下去,當(dāng)小明走剩下路程的到Bn處時(shí),其影子BnCn的長(zhǎng)為 m.(直接用n的代數(shù)式表示) 【考點(diǎn)】相似三角形的應(yīng)用;中心投影. 【分析】(1)確定燈泡的位置,可以利用光線可逆可以畫出; (2)要求垂直高度GH可以把這個(gè)問題轉(zhuǎn)化成相似三角形的問題,圖中△ABC∽△GHC由它們對(duì)應(yīng)成比例可以求出GH; (3)的方法和(2)一樣也是利用三角形相似,對(duì)應(yīng)相等成比例可以求出,然后找出規(guī)律. 【解答】解:(1)如圖:形成影子的光線,路燈燈泡所在的位置G. (2)解:由題意得:△ABC∽△GHC, ∴=, ∴=, 解得:GH=4.8(m), 答:路燈燈泡的垂直高度GH是4.8m. (3)同理△A1B1C1∽△GHC1, ∴=, 設(shè)B1C1長(zhǎng)為x(m),則=, 解得:x=(m),即B1C1=(m). 同理=, 解得B2C2=1(m), ∴=, 解得:BnCn=. 故答案為:. 【點(diǎn)評(píng)】本題主要考查相似三角形的應(yīng)用及中心投影,只要是把實(shí)際問題抽象到相似三角形中,利用相似三角形的性質(zhì)對(duì)應(yīng)邊成比例解題. 26.(16分)(2016?齊齊哈爾)如圖所示,在平面直角坐標(biāo)系中,過點(diǎn)A(﹣,0)的兩條直線分別交y軸于B、C兩點(diǎn),且B、C兩點(diǎn)的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個(gè)根 (1)求線段BC的長(zhǎng)度; (2)試問:直線AC與直線AB是否垂直?請(qǐng)說明理由; (3)若點(diǎn)D在直線AC上,且DB=DC,求點(diǎn)D的坐標(biāo); (4)在(3)的條件下,直線BD上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由. 【考點(diǎn)】三角形綜合題. 【分析】(1)解出方程后,即可求出B、C兩點(diǎn)的坐標(biāo),即可求出BC的長(zhǎng)度; (2)由A、B、C三點(diǎn)坐標(biāo)可知OA2=OC?OB,所以可證明△AOC∽△BOA,利用對(duì)應(yīng)角相等即可求出∠CAB=90; (3)容易求得直線AC的解析式,由DB=DC可知,點(diǎn)D在BC的垂直平分線上,所以D的縱坐標(biāo)為1,將其代入直線AC的解析式即可求出D的坐標(biāo); (4)A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,可分為以下三種情況:①AB=AP;②AB=BP;③AP=BP;然后分別求出P的坐標(biāo)即可. 【解答】(1)∵x2﹣2x﹣3=0, ∴x=3或x=﹣1, ∴B(0,3),C(0,﹣1), ∴BC=4, (2)∵A(﹣,0),B(0,3),C(0,﹣1), ∴OA=,OB=3,OC=1, ∴OA2=OB?OC, ∵∠AOC=∠BOA=90, ∴△AOC∽△BOA, ∴∠CAO=∠ABO, ∴∠CAO+∠BAO=∠ABO+∠BAO=90, ∴∠BAC=90, ∴AC⊥AB; (3)設(shè)直線AC的解析式為y=kx+b, 把A(﹣,0)和C(0,﹣1)代入y=kx+b, ∴, 解得:, ∴直線AC的解析式為:y=﹣x﹣1, ∵DB=DC, ∴點(diǎn)D在線段BC的垂直平分線上, ∴D的縱坐標(biāo)為1, ∴把y=1代入y=﹣x﹣1, ∴x=﹣2, ∴D的坐標(biāo)為(﹣2,1), (4)設(shè)直線BD的解析式為:y=mx+n,直線BD與x軸交于點(diǎn)E, 把B(0,3)和D(﹣2,1)代入y=mx+n, ∴, 解得, ∴直線BD的解析式為:y=x+3, 令y=0代入y=x+3, ∴x=﹣3, ∴E(﹣3,0), ∴OE=3, ∴tan∠BEC==, ∴∠BEO=30, 同理可求得:∠ABO=30, ∴∠ABE=30, 當(dāng)PA=AB時(shí),如圖1, 此時(shí),∠BEA=∠ABE=30, ∴EA=AB, ∴P與E重合, ∴P的坐標(biāo)為(﹣3,0), 當(dāng)PA=PB時(shí),如圖2, 此時(shí),∠PAB=∠PBA=30, ∵∠ABE=∠ABO=30, ∴∠PAB=∠ABO, ∴PA∥BC, ∴∠PAO=90, ∴點(diǎn)P的橫坐標(biāo)為﹣, 令x=﹣代入y=x+3, ∴y=2, ∴P(﹣,2), 當(dāng)PB=AB時(shí),如圖3, ∴由勾股定理可求得:AB=2,EB=6, 若點(diǎn)P在y軸左側(cè)時(shí),記此時(shí)點(diǎn)P為P1, 過點(diǎn)P1作P1F⊥x軸于點(diǎn)F, ∴P1B=AB=2, ∴EP1=6﹣2, ∴sin∠BEO=, ∴FP1=3﹣, 令y=3﹣代入y=x+3, ∴x=﹣3, ∴P1(﹣3,3﹣), 若點(diǎn)P在y軸的右側(cè)時(shí),記此時(shí)點(diǎn)P為P2, 過點(diǎn)P2作P2G⊥x軸于點(diǎn)G, ∴P2B=AB=2, ∴EP2=6+2, ∴sin∠BEO=, ∴GP2=3+, 令y=3+代入y=x+3, ∴x=3, ∴P2(3,3+), 綜上所述,當(dāng)A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形時(shí),點(diǎn)P的坐標(biāo)為(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+). 【點(diǎn)評(píng)】本題考查二次函數(shù)的綜合問題,涉及一元二次方程的解法,相似三角形的判定,等腰三角形的性質(zhì),垂直平分線的判定等知識(shí),內(nèi)容較為綜合,需要學(xué)生靈活運(yùn)用所知識(shí)解決.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 九年級(jí)數(shù)學(xué)上學(xué)期10月月考試卷含解析 蘇科版 5 九年級(jí) 數(shù)學(xué) 學(xué)期 10 月月 考試卷 解析
鏈接地址:http://www.820124.com/p-11758351.html