《(新課標)2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第四章 三角函數(shù) 題組層級快練28 正、余弦定理 文(含解析)》由會員分享,可在線閱讀,更多相關(guān)《(新課標)2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第四章 三角函數(shù) 題組層級快練28 正、余弦定理 文(含解析)(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、題組層級快練(二十八)
1.(2019·滄州七校聯(lián)考)已知△ABC,a=,b=,∠A=30°,則c=( )
A.2 B.
C.2或 D.均不正確
答案 C
解析 ∵=,
∴sinB==·sin30°=.
∵b>a,∴B=60°或120°.
若B=60°,C=90°,∴c==2.
若B=120°,C=30°,∴a=c=.
2.(2019·安徽馬鞍山一模)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知a=,b=2,A=60°,則c=( )
A. B.1
C. D.2
答案 B
解析 ∵a=,b=2,A=60°,∴由余弦定理a2=b2
2、+c2-2bccosA,得3=4+c2-2×2×c×,整理得c2-2c+1=0,解得c=1.故選B.
3.(2019·安徽合肥模擬)在△ABC中,A=60°,AB=2,且△ABC的面積為,則BC的長為( )
A. B.
C.2 D.2
答案 B
解析 因為S=AB·ACsinA=×2×AC=,所以AC=1,
所以BC2=AB2+AC2-2AB·ACcos60°=3.
所以BC=.
4.(2016·山東)△ABC中,角A,B,C的對邊分別是a,b,c.已知b=c,a2=2b2(1-sinA),則A=( )
A. B.
C. D.
答案 C
解析 由余弦
3、定理得a2=b2+c2-2bccosA=2b2-2b2cosA,所以2b2(1-sinA)=2b2(1-cosA),所以sinA=cosA,即tanA=1,又00,∴A的取值范圍是(0,].故選C.
6.(2
4、019·廣東惠州三調(diào))在△ABC中,角A,B,C的對邊分別是a,b,c,已知b=2,c=2,且C=,則△ABC的面積為( )
A.+1 B.-1
C.4 D.2
答案 A
解析 由正弦定理=,得sinB==.又c>b,且B∈(0,π),所以B=,所以A=,所以S=bcsinA=×2×2sin=×2×2×=+1.故選A.
7.(2019·江西七校一聯(lián))在△ABC中,若sin(A-B)=1+2cos(B+C)sin(A+C),則△ABC的形狀一定是( )
A.等邊三角形 B.不含60°的等腰三角形
C.鈍角三角形 D.直角三角形
答案 D
解析 sin(A-B
5、)=1+2cos(B+C)sin(A+C)=1-2cosAsinB,∴sinAcosB-cosAsinB=1-2cosAsinB,∴sinAcosB+cosAsinB=1,即sin(A+B)=1,則有A+B=,故三角形為直角三角形.
8.(2014·江西)在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,若c2=(a-b)2+6,C=,則△ABC的面積是( )
A.3 B.
C. D.3
答案 C
解析 利用所給條件以及余弦定理整體求解ab的值,再利用三角形面積公式求解.
∵c2=(a-b)2+6,∴c2=a2+b2-2ab+6.①
∵C=,∴c2=a2+b2-2a
6、bcos=a2+b2-ab.②
由①②得-ab+6=0,即ab=6.
∴S△ABC=absinC=×6×=.
9.(2014·課標全國Ⅱ)已知鈍角三角形ABC的面積是,AB=1,BC=,則AC=( )
A.5 B.
C.2 D.1
答案 B
解析 由題意可得AB·BC·sinB=,又AB=1,BC=,所以sinB=,所以B=45°或B=135°.當B=45°時,由余弦定理可得AC==1,此時AC=AB=1,BC=,易得A=90°,與“鈍角三角形”條件矛盾,舍去.所以B=135°.由余弦定理可得AC==.故選B.
10.(2015·安徽,文)在△ABC中,AB=,∠A=
7、75°,∠B=45°,則AC=________.
答案 2
解析 因為∠A=75°,∠B=45°,所以∠C=60°,由正弦定理可得=,解得AC=2.
11.(2015·重慶,文)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=2,cosC=-,3sinA=2sinB,則c=________.
答案 4
解析 由3sinA=2sinB及正弦定理,得3a=2b,所以b=a=3.由余弦定理cosC=,得-=,解得c=4.
12.(2019·河北唐山一模)在△ABC中,角A,B,C的對邊a,b,c成等差數(shù)列,且A-C=90°,則cosB=________.
答案
解析 ∵a,
8、b,c成等差數(shù)列,∴2b=a+c.
∴2sinB=sinA+sinC.
∵A-C=90°,∴2sinB=sin(90°+C)+sinC.
∴2sinB=cosC+sinC.
∴2sinB=sin(C+45°).①
∵A+B+C=180°且A-C=90°,∴C=45°-,代入①式中,2sinB=sin(90°-).
∴2sinB=cos.
∴4sincos=cos.
∴sin=.
∴cosB=1-2sin2=1-=.
13.(2018·北京,文)若△ABC的面積為(a2+c2-b2),且∠C為鈍角,則∠B=________;的取值范圍是________.
答案 60° (2
9、,+∞)
解析 △ABC的面積S=acsinB=(a2+c2-b2)=×2accosB,所以tanB=,因為0°<∠B<180°,所以∠B=60°.因為∠C為鈍角,所以0°<∠A<30°,所以02,故的取值范圍為(2,+∞).
14.(2017·北京,理)在△ABC中,∠A=60°,c=a.
(1)求sinC的值;
(2)若a=7,求△ABC的面積.
答案 (1) (2)6
解析 (1)根據(jù)正弦定理:
=?sinC==×sin60°=×=.
(2)當a=7時,c=a=3
10、π-(A+C)]=sin(A+C)=sinAcosC+cosAsinC=×+×=,
∴S△ABC=ac×sinB=×7×3×=6.
15.(2019·福建高中畢業(yè)班質(zhì)檢)在△ABC中,角A,B,C的對邊分別為a,b,c,2bcosC-c=2a.
(1)求B的大??;
(2)若a=3,且AC邊上的中線長為,求c的值.
答案 (1) (2)5
解析 (1)∵2bcosC-c=2a,
∴由余弦定理得2b·-c=2a,
化簡得a2+c2-b2=-ac,∴cosB==-.
∵B∈(0,π),∴B=.
(2)由(1)可得b2=a2+c2+ac=c2+3c+9.①
又cosC=,②
取
11、AC的中點D,連接BD,在△CBD中,cosC==,③
由②③得2c2-b2=1.④
由①④得c2-3c-10=0,解得c=5或c=-2(舍去),∴c=5.
16.(2019·衡水中學(xué)調(diào)研卷)設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c,且有2sinBcosA=sinAcosC+cosAsinC.
(1)求角A的大??;
(2)若b=2,c=1,D為BC的中點,求AD的長.
答案 (1) (2)
解析 (1)方法一:由題設(shè)知,2sinBcosA=sin(A+C)=sinB,因為sinB≠0,所以cosA=.
由于0
12、·,于是b2+c2-a2=bc,所以cosA==.
由于0