影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

(新課標(biāo) 全國I卷)2010-2019學(xué)年高考數(shù)學(xué) 真題分類匯編 專題18 不等式選講 文(含解析)

上傳人:Sc****h 文檔編號(hào):120713011 上傳時(shí)間:2022-07-18 格式:DOC 頁數(shù):8 大?。?.43MB
收藏 版權(quán)申訴 舉報(bào) 下載
(新課標(biāo) 全國I卷)2010-2019學(xué)年高考數(shù)學(xué) 真題分類匯編 專題18 不等式選講 文(含解析)_第1頁
第1頁 / 共8頁
(新課標(biāo) 全國I卷)2010-2019學(xué)年高考數(shù)學(xué) 真題分類匯編 專題18 不等式選講 文(含解析)_第2頁
第2頁 / 共8頁
(新課標(biāo) 全國I卷)2010-2019學(xué)年高考數(shù)學(xué) 真題分類匯編 專題18 不等式選講 文(含解析)_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(新課標(biāo) 全國I卷)2010-2019學(xué)年高考數(shù)學(xué) 真題分類匯編 專題18 不等式選講 文(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《(新課標(biāo) 全國I卷)2010-2019學(xué)年高考數(shù)學(xué) 真題分類匯編 專題18 不等式選講 文(含解析)(8頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、專題18 不等式選講 不等式選講大題:10年10考,而且是作為2個(gè)選做題之一出現(xiàn)的,主要考絕對(duì)值不等式的解法(出現(xiàn)頻率太高了,應(yīng)當(dāng)高度重視),偶爾也考基本不等式.全國卷很少考不等式小題,如果說有考的話,可以認(rèn)為在其它小題中考一些解法之類的問題.不等式作為一種工具,解題經(jīng)常用到,不單獨(dú)命小題顯然也是合理的.不等式的證明一般考在函數(shù)與導(dǎo)數(shù)綜合題中出現(xiàn). 1.(2019年)已知a,b,c為正數(shù),且滿足abc=1.證明: (1)++≤a2+b2+c2; (2)(a+b)3+(b+c)3+(c+a)3≥24. 【解析】(1)要證++≤a2+b2+c2;因?yàn)閍bc=1. 就要證:++≤a2+b

2、2+c2; 即證:bc+ac+ab≤a2+b2+c2; 即:2bc+2ac+2ab≤2a2+2b2+2c2; 2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0 (a﹣b)2+(a﹣c)2+(b﹣c)2≥0; ∵a,b,c為正數(shù),且滿足abc=1. ∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;當(dāng)且僅當(dāng):a=b=c=1時(shí)取等號(hào). 即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得證. 故++≤a2+b2+c2得證. (2)證(a+b)3+(b+c)3+(c+a)3≥24成立; 即:已知a,b,c為正數(shù),且滿足abc=1. (a+b)為正數(shù);(b+c)為正數(shù);

3、(c+a)為正數(shù); (a+b)3+(b+c)3+(c+a)3≥3(a+b)?(b+c)?(c+a); 當(dāng)且僅當(dāng)(a+b)=(b+c)=(c+a)時(shí)取等號(hào);即:a=b=c=1時(shí)取等號(hào); ∵a,b,c為正數(shù),且滿足abc=1. (a+b)≥2;(b+c)≥2;(c+a)≥2; 當(dāng)且僅當(dāng)a=b,b=c;c=a時(shí)取等號(hào);即:a=b=c=1時(shí)取等號(hào); ∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)?(b+c)?(c+a)≥3×8??=24abc=24; 當(dāng)且僅當(dāng)a=b=c=1時(shí)取等號(hào); 故(a+b)3+(b+c)3+(c+a)3≥24.得證. 故得證. 2.(2018年)已

4、知f(x)=|x+1|﹣|ax﹣1|. (1)當(dāng)a=1時(shí),求不等式f(x)>1的解集; (2)若x∈(0,1)時(shí)不等式f(x)>x成立,求a的取值范圍. 【解析】(1)當(dāng)a=1時(shí),f(x)=|x+1|﹣|x﹣1|=, 由f(x)>1, ∴或, 解得x>, 故不等式f(x)>1的解集為(,+∞), (2)當(dāng)x∈(0,1)時(shí)不等式f(x)>x成立, ∴|x+1|﹣|ax﹣1|﹣x>0, 即x+1﹣|ax﹣1|﹣x>0, 即|ax﹣1|<1, ∴﹣1<ax﹣1<1, ∴0<ax<2, ∵x∈(0,1), ∴a>0, ∴0<x<, ∴a<, ∵>2, ∴0<a≤2

5、, 故a的取值范圍為(0,2]. 3.(2017年)已知函數(shù)f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|. (1)當(dāng)a=1時(shí),求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍. 【解析】(1)當(dāng)a=1時(shí),f(x)=﹣x2+x+4,是開口向下,對(duì)稱軸為x=的二次函數(shù), g(x)=|x+1|+|x﹣1|=, 當(dāng)x∈(1,+∞)時(shí),令﹣x2+x+4=2x,解得x=,g(x)在(1,+∞)上單調(diào)遞增,f(x)在(1,+∞)上單調(diào)遞減,∴此時(shí)f(x)≥g(x)的解集為(1,]; 當(dāng)x∈[﹣1,1]時(shí),g(x)=2,

6、f(x)≥f(﹣1)=2. 當(dāng)x∈(﹣∞,﹣1)時(shí),g(x)單調(diào)遞減,f(x)單調(diào)遞增,且g(﹣1)=f(﹣1)=2. 綜上所述,f(x)≥g(x)的解集為[﹣1,]; (2)依題意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,則只需,解得﹣1≤a≤1, 故a的取值范圍是[﹣1,1]. 4.(2016年)已知函數(shù)f(x)=|x+1|﹣|2x﹣3|. (1)在圖中畫出y=f(x)的圖象; (2)求不等式|f(x)|>1的解集. 【解析】(1)f(x)=, 由分段函數(shù)的圖象畫法,可得f(x)的圖象,如圖: (2)由|f(x)|>

7、1,可得 當(dāng)x≤﹣1時(shí),|x﹣4|>1,解得x>5或x<3,即有x≤﹣1; 當(dāng)﹣1<x<時(shí),|3x﹣2|>1,解得x>1或x<, 即有﹣1<x<或1<x<; 當(dāng)x≥時(shí),|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3. 綜上可得,x<或1<x<3或x>5. 則|f(x)|>1的解集為(﹣∞,)∪(1,3)∪(5,+∞). 5.(2015年)已知函數(shù)f(x)=|x+1|﹣2|x﹣a|,a>0. (1)當(dāng)a=1時(shí),求不等式f(x)>1的解集; (2)若f(x)的圖象與x軸圍成的三角形面積大于6,求a的取值范圍. 【解析】(1)當(dāng)a=1時(shí),不等式f(x)>1,即|x+1|

8、﹣2|x﹣1|>1, 即①,或②,或③. 解①求得x∈?,解②求得<x<1,解③求得1≤x<2. 綜上可得,原不等式的解集為(,2). (2)函數(shù)f(x)=|x+1|﹣2|x﹣a|=, 由此求得f(x)的圖象與x軸的交點(diǎn)A (,0),B(2a+1,0), 故f(x)的圖象與x軸圍成的三角形的第三個(gè)頂點(diǎn)C(a,a+1), 由△ABC的面積大于6, 可得[2a+1﹣](a+1)>6,求得a>2. 故要求的a的范圍為(2,+∞). 6.(2014年)若a>0,b>0,且+=. (1)求a3+b3的最小值; (2)是否存在a,b,使得2a+3b=6?并說明理由. 【解析】

9、(1)∵a>0,b>0,且+=, ∴=+≥,∴ab≥2, 當(dāng)且僅當(dāng)a=b=時(shí)取等號(hào). ∵a3+b3 ≥≥=,當(dāng)且僅當(dāng)a=b=時(shí)取等號(hào), ∴a3+b3的最小值為. (2)∵2a+3b≥=,當(dāng)且僅當(dāng)2a=3b時(shí),取等號(hào). 而由(1)可知,≥=>6, 故不存在a,b,使得2a+3b=6成立. 7.(2013年)已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3. (1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集; (2)設(shè)a>﹣1,且當(dāng)x∈[,]時(shí),f(x)≤g(x),求a的取值范圍. 【解析】(1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)化為|2x﹣1|+|2

10、x﹣2|﹣x﹣3<0. 設(shè)y=|2x﹣1|+|2x﹣2|﹣x﹣3,則y=,它的圖象如圖所示: 結(jié)合圖象可得,y<0的解集為(0,2),故原不等式的解集為(0,2). (2)設(shè)a>﹣1,且當(dāng)x∈[,]時(shí),f(x)=1+a,不等式化為1+a≤x+3, 故x≥a﹣2對(duì)x∈[,]都成立. 故≥a﹣2, 解得a≤, 故a的取值范圍為(﹣1,]. 8.(2012年)已知函數(shù)f(x)=|x+a|+|x﹣2| (1)當(dāng)a=﹣3時(shí),求不等式f(x)≥3的解集; (2)f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范圍. 【解析】(1)當(dāng)a=﹣3時(shí),f(x)≥3 即|x﹣3|+|

11、x﹣2|≥3,即 ,可得x≤1; ,可得x∈?; ,可得x≥4. 取并集可得不等式的解集為 {x|x≤1或x≥4}. (2)原命題即f(x)≤|x﹣4|在[1,2]上恒成立,等價(jià)于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立, 等價(jià)于|x+a|≤2,等價(jià)于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立. 故當(dāng) 1≤x≤2時(shí),﹣2﹣x的最大值為﹣2﹣1=﹣3,2﹣x的最小值為0, 故a的取值范圍為[﹣3,0]. 9.(2011年)設(shè)函數(shù)f(x)=|x﹣a|+3x,其中a>0. (1)當(dāng)a=1時(shí),求不等式f(x)≥3x+2的解集 (2)若不等式f(x)≤0的解集

12、為{x|x≤﹣1},求a的值. 【解析】(1)當(dāng)a=1時(shí),f(x)≥3x+2可化為|x﹣1|≥2. 由此可得x≥3或x≤﹣1. 故不等式f(x)≥3x+2的解集為{x|x≥3或x≤﹣1}. (2)由f(x)≤0得|x﹣a|+3x≤0, 此不等式化為不等式組或, 即或, 因?yàn)閍>0,所以不等式組的解集為{x|x}, 由題設(shè)可得=﹣1,故a=2. 10.(2010年)設(shè)函數(shù)f(x)=|2x﹣4|+1. (1)畫出函數(shù)y=f(x)的圖象; (2)若不等式f(x)≤ax的解集非空,求a的取值范圍. 【解析】(1)由于f(x)=, 函數(shù)y=f(x)的圖象如圖所示. (2)由函數(shù)y=f(x)與函數(shù)y=ax的圖象可知,極小值在點(diǎn)(2,1) 當(dāng)且僅當(dāng)a<﹣2或a≥時(shí),函數(shù)y=f(x)與函數(shù)y=ax的圖象有交點(diǎn). 故不等式f(x)≤ax的解集非空時(shí),a的取值范圍為(﹣∞,﹣2)∪[,+∞). 8

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!