購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
畢業(yè)設(shè)計說明書目錄
緒 論 1
第1章 注塑模的設(shè)計要求 3
1.1 合理的選擇模具結(jié)構(gòu) 3
1.2 正確地確定模具成型零件的尺寸 3
1.3 設(shè)計的模具應(yīng)制造方便 3
1.4 模具零件應(yīng)耐磨耐用 3
第2章 模塑工藝規(guī)程的編制 4
2.1 塑件的工藝性分析 4
2.1.1 塑件的原材料分析 4
2.1.2 塑件的結(jié)構(gòu)和尺寸精度及表面質(zhì)量分析 4
2.2 計算塑件的體積和質(zhì)量 5
2.3 塑件注塑工藝參數(shù)的確定 5
第3章 注塑模的結(jié)構(gòu)設(shè)計 7
3.1 分型面的選擇 7
3.2 確定型腔的排列方式 8
3.3 澆注系統(tǒng)設(shè)計 8
3.3.1 主流道設(shè)計 8
3.3.2 分流道設(shè)計 9
3.3.3 澆口設(shè)計 9
3.3.4 定位環(huán)與主流道襯套設(shè)計 9
3.4 抽芯機(jī)構(gòu)設(shè)計 9
3.4.1 確定抽拔距 9
3.4.2 確定斜導(dǎo)板傾角 9
3.4.3 確定斜導(dǎo)板的尺寸 9
3.4.4 斜導(dǎo)槽、導(dǎo)滑套與導(dǎo)滑槽設(shè)計 10
畢業(yè)設(shè)計說明書目錄
3.5 成型零件結(jié)構(gòu)設(shè)計 10
3.5.1 凹模結(jié)構(gòu)設(shè)計 10
3.5.2 凸模結(jié)構(gòu)設(shè)計 10
3.5.3 螺紋型環(huán)設(shè)計 11
第4章 模具設(shè)計的有關(guān)計算 12
4.1 型腔和型芯工作尺寸計算 12
4.2 型腔側(cè)壁厚度和底板厚度計算 13
4.2.1 上下凹模型腔側(cè)壁厚度計 13
4.2.2 上下凹模型腔底板厚度計算 13
第5章 模具冷卻與加熱系統(tǒng)的計算 15
第6章 模具閉合高度的確定 16
第7章 注塑機(jī)有關(guān)參數(shù)的校核 17
第8章 模具裝配 18
8.1 模具安裝 18
8.2模具工作原理 18
8.3 注塑問題及其解決方法 18
8.3.1 粘著模腔 19
8.3.2 粘著模芯 19
8.3.3 粘著主流道 19
8.3.4 成型缺陷 20
8.3.5 調(diào)整措施 21
第9章 模具典型零件機(jī)械加工工序卡 22
畢業(yè)設(shè)計說明書目錄
小 結(jié) 23
致 謝 24
參考文獻(xiàn) 25
河南機(jī)電高等??茖W(xué)校畢業(yè)設(shè)計說明書
長接頭注塑模設(shè)計
緒 論
模具是利用其特定形狀去成型具有一定形狀和尺寸的制品的工具。在各種材料加工工業(yè)中廣泛地使用著各種模具,例如金屬鑄造成型使用的砂型或壓鑄模具、金屬壓力加工使用的鍛壓模具、冷壓模具及成型陶瓷、玻璃等制品使用的各種模具。
成型塑料制品的模具叫做塑料模具。
對塑料模具的全面要求是:能生產(chǎn)出尺寸精度、外觀、物理性能等各方面均能滿足使用要求的優(yōu)質(zhì)制品。以模具使用的角度,要求高效率、自動化、操作簡單;從模具制造的角度,要求結(jié)構(gòu)合理、制造容易、成本低廉。
塑料模具影響著塑料制品的質(zhì)量。首先,模具型腔的形狀、尺寸、表面光潔度、分型面、進(jìn)澆和排氣槽位置以及脫模方式等對制件的尺寸精度和形狀精度以及制件的物理性能、機(jī)械性能、電性能、內(nèi)應(yīng)力大小、各向同性、外觀質(zhì)量、表面光潔度、氣泡、凹痕、燒焦、銀紋等都有十分重要的影響。其次,在塑料加工過程中,模具結(jié)構(gòu)對操作難易程度影響很大。在大批量生產(chǎn)塑料制品時,應(yīng)盡量減少開模、合模和取制件過程中的手工勞動,為此常采用自動開合模和自動頂出機(jī)構(gòu)。在全自動生產(chǎn)時還要保證制品能自動從模具上脫落。另外,模具對塑料制品的成本也相當(dāng)?shù)挠绊憽3喴啄>咄?,一般來說制模費時十分昂貴的。一副優(yōu)良的注塑模具可生產(chǎn)制品百萬件以上,壓制模約能生產(chǎn)二十五萬件。當(dāng)批量不大時,模具費用在制件成本中所占的比例將會很大,這時應(yīng)盡可能地采用結(jié)構(gòu)合理而簡單的模具,以降低成本。
現(xiàn)代塑料制品生產(chǎn)中,合理的加工工藝、高效的設(shè)備、先進(jìn)的模具時必不可少的三項重要因素,尤其是塑料模具對實現(xiàn)塑料加工工藝要求、塑料制件使用要求和造型設(shè)計設(shè)計起著重要作用。高效的全自動的設(shè)備也裝上能自動生產(chǎn)的模具才有可能發(fā)揮其效能,產(chǎn)品的生產(chǎn)和更新都是以模具制造和更新為前提。由于工業(yè)塑件和日用塑料制品的品種和產(chǎn)量需求量很大,對塑料模具也提出里越來越高的要求,因此促使塑料模具生產(chǎn)不斷向前發(fā)展。
近年來,塑料成型加工機(jī)械和成型模具增長十分迅速,高效率、自動化、大型、微型、精密、高壽命的模具在整個模具產(chǎn)量中所占的比重越來越大。從模具設(shè)計和制造技術(shù)角度來看,模具的發(fā)展趨勢可歸納為以下幾個方面。
(1)加深理論研究。在模具設(shè)計中,對工藝原理的研究越來越深入,模具設(shè)計已由經(jīng)驗設(shè)計階段逐漸向理論計算設(shè)計方面發(fā)展,尤其是擠出機(jī)頭的設(shè)計,這使擠出制品的產(chǎn)量和質(zhì)量都得到很大的提高。
(2)高效率、自動化。大量采用各種高效率、自動化的模具結(jié)構(gòu),如高效冷卻以縮短成型周期;各種能可靠地自動脫出產(chǎn)品和流道凝料的脫模機(jī)構(gòu);熱流道澆注系統(tǒng)注射模具等。高速自動化的塑料成型機(jī)械配合以先進(jìn)的模具,對提高產(chǎn)品的質(zhì)量,提高生產(chǎn)效率,降低成本起了很大的作用。
(3)大型、超小型及高精度。由于塑料應(yīng)用的擴(kuò)大,塑料制件已應(yīng)用到建筑、機(jī)械、電子、儀器、儀表等各個工業(yè)領(lǐng)域,于是出現(xiàn)了各種大型、精密和高壽命的成型模具,為了滿足這些要求,研制了各種高強(qiáng)度、高硬度、高耐磨性能且易加工、熱處理變形小、導(dǎo)熱性優(yōu)異的制模材料。
(4)革新模具制造工藝。威力更新產(chǎn)品花色和適應(yīng)小批量產(chǎn)品的生產(chǎn)要求,除大力發(fā)展高強(qiáng)度、高耐磨性的材料外,同時又重視簡易制模工藝的研究;如采用低熔點有色金屬和金澆鑄或噴涂制模;以鋁粉或鐵粉填充的環(huán)氧樹脂以及聚氨酯彈性體制模,這大大縮短了模具制造周期,降低了成本。
(5)標(biāo)準(zhǔn)化。開展模具標(biāo)準(zhǔn)化工作,使模板導(dǎo)柱等通用零件標(biāo)準(zhǔn)化、商品化,以適應(yīng)大規(guī)模地成批的生產(chǎn)塑料成型模具。
此外,對一些特殊制品,研制了各種特殊結(jié)構(gòu)的模具,如低發(fā)泡制品注射模具、低發(fā)泡制品擠出機(jī)頭、多層薄膜復(fù)合機(jī)頭、雙色注射模具等 。
第1章 注塑模的設(shè)計要求
1.1 合理的選擇模具結(jié)構(gòu)
根據(jù)塑件的圖紙及技術(shù)要求,研究和選擇適當(dāng)?shù)某尚头椒ㄅc設(shè)備,結(jié)合工廠的機(jī)械加工能力,提出模具結(jié)構(gòu)方案,充分征求有關(guān)方面的意見,進(jìn)行分析討論,以使設(shè)計出的模具結(jié)構(gòu)合理、質(zhì)量可靠、操作方便。
1.2 正確地確定模具成型零件的尺寸
成型零件是確定制件形狀、尺寸和表面質(zhì)量的直接因素,關(guān)系甚大,需特別注意。計算成型零件尺寸時,一般可采用平均收縮率法。對精度要求較高并需控制修模余量的制件,可按公差帶法計算,以彌補(bǔ)理論上難以考慮的某些因素的影響。
1.3 設(shè)計的模具應(yīng)制造方便
設(shè)計模具時,盡量做到設(shè)計的模具制造容易、造價便宜。特別那些復(fù)雜的成型零件,必須考慮是采用一般的機(jī)械加工方法加工還是采用特殊的加工方法加工。同時還應(yīng)考慮到試模以后的修模,要留有足夠的修模余量。
1.4 模具零件應(yīng)耐磨耐用
模具零件的耐用度影響整個模具的使用壽命。因此在設(shè)計這類零件時不但應(yīng)對其材料、加工方法、熱處理等提出要求。像桿一類的銷柱件還容易卡住、彎曲、折斷,因此而造成的故障占模具故障的大部分。為此還應(yīng)考慮如何方便地調(diào)整與更換,但需注意零件壽命與模具向適應(yīng)。
此外還需充分考慮塑件特色,盡量減少后加工;設(shè)計的模具還應(yīng)當(dāng)效率高、安全可靠。以下的設(shè)計應(yīng)滿足這些要求。
第2章 模塑工藝規(guī)程的編制
該塑件是一個作為連接件的長接頭,其零件圖如圖2-1所示。本塑件的材料采用硬質(zhì)聚氯乙烯,生產(chǎn)類型為大批量生產(chǎn)。
圖2-1 長接頭
2.1 塑件的工藝性分析
2.1.1 塑件的原材料分析
塑件的材料采用硬質(zhì)聚氯乙烯,屬熱塑性塑料。從使用性能上看,該塑件具有剛度好,耐水、耐油性強(qiáng),其介電性能與溫度和頻率無關(guān),是理想的絕緣材料;從成型性能上看,該塑料熔料的流動性差,充模困難,流道盡可能粗、短、厚,模具型腔表面應(yīng)鍍鉻、滲氮處理。另外,該塑件成型時易產(chǎn)生縮孔、凹痕、變形等缺陷,成型溫度低,方向性明顯,凝固速度較快,易產(chǎn)生內(nèi)應(yīng)力;收縮率大且呈方向性,制件尺寸不易控制【2】。因此,在成型時應(yīng)注意控制成型溫度,澆注系統(tǒng)應(yīng)較緩慢散熱,冷卻速度不宜過快。
2.1.2 塑件的結(jié)構(gòu)和尺寸精度及表面質(zhì)量分析
1)結(jié)構(gòu)分析。從零件圖上分析,該零件總體形狀為圓柱形。在距兩端面4mm處各有一個梯形螺紋,其寬度為25mm,齒高為4mm,中間為?120mm的圓和?110mm的圓構(gòu)成的圓環(huán)。因此,模具設(shè)計時必須設(shè)置側(cè)向分型抽芯機(jī)構(gòu),該零件屬于中等復(fù)雜程度。
2)尺寸精度分析。該零件各個尺寸均為注明公差,為提高經(jīng)濟(jì)效益,則按未注明公差尺寸來處理,根據(jù)表2—15查得HPVC材料的適用未注公差等級為MT5級,對應(yīng)的模具相關(guān)零件的尺寸加工容易保證。
從塑件的壁厚來看,總體壁厚較均勻,壁厚差出現(xiàn)在梯形螺紋處,最大壁厚差為5mm,不過是個螺紋,帶有齒高。因此,壁厚過渡較均勻,有利于零件成型。
3)表層質(zhì)量分析。該零件的表面質(zhì)量除要求沒有缺陷、毛刺、內(nèi)部不得有導(dǎo)電雜質(zhì)外,沒有特別的表面質(zhì)量要求,故比較容易實現(xiàn)。
綜上分析,可以看出,注塑時在工藝參數(shù)控制的較好的情況下,零件的成型要求可以得到保證。
2.2 計算塑件的體積和質(zhì)量
計算塑件的質(zhì)量是為了選用注塑機(jī)及確定模具型腔數(shù)。
計算塑件的體積:用體積分割法求得
V=60×60×3.14×220-55×55×3.14×220+2×3.14×25×(642-602)
=475082
計算塑件的質(zhì)量:根據(jù)設(shè)計手冊查得HPVC的密度為ρ=1.4g/,
故塑件的質(zhì)量為:W=Vρ
=475082×1.4×10-3
=665g
經(jīng)計算塑件體積和質(zhì)量,根據(jù)手冊【4】,采用一模一件的模具結(jié)構(gòu),考慮其外形尺寸,注塑時所需壓力和設(shè)備等情況,初選用注塑機(jī)XS-ZY-500型。
2.3 塑件注塑工藝參數(shù)的確定
查相關(guān)文獻(xiàn)資料【3】,硬質(zhì)聚氯乙烯塑料的成型工藝參數(shù)可作如下選擇:(試模時,可根據(jù)實際情況作適當(dāng)調(diào)整)
注塑溫度:包括料筒溫度和噴嘴溫度。
料筒溫度:后段溫度選用160℃;
中段溫度選用170℃;
前段溫度選用180℃;
噴嘴溫度:選用170℃;
注塑壓力:選用100Mpa;
注塑時間:選用10s;
保 壓:選用50Mpa;
保壓時間:選用45s;
冷卻時間:選用20s。
第3章 注塑模的結(jié)構(gòu)設(shè)計
注塑模結(jié)構(gòu)設(shè)計主要包括:分型面選擇、模具型腔數(shù)目的確定、型腔的排列方式、冷卻水道布局、澆口位置設(shè)置、模具工作零件的結(jié)構(gòu)設(shè)計、側(cè)向分型與抽芯機(jī)構(gòu)的設(shè)計、推出機(jī)構(gòu)的設(shè)計等內(nèi)容。
3.1 分型面的選擇
模具設(shè)計中,分型面的選擇很關(guān)鍵,它決定了模具的結(jié)構(gòu)。應(yīng)根據(jù)分型面選擇原則和塑件的成型要求來選擇分型面。選擇分型面的原則【1】是:塑件脫出方便、模具結(jié)構(gòu)簡單、型腔排氣順利、確保塑件質(zhì)量、無損塑件外觀、設(shè)備利用合理。
該塑件為連接件,表面質(zhì)量無特殊要求。對制件結(jié)構(gòu)進(jìn)行分析后,可有以下兩種分型方案可供選擇,分別如圖2 和圖3所示。
圖3-1 分型面的選擇方案(1)
圖3-2 分型面的選擇方案(2)
根據(jù)分型面應(yīng)選在塑件外形最大輪廓處的原則,擬采用圖2所示的分型方案。該零件較長,采用圖2的方案可減少開模行程,且只要在一側(cè)設(shè)計側(cè)抽芯機(jī)構(gòu),即可降低模具的復(fù)雜程度,減少模具加工難度,又便于成型取件。
如果采用圖3所示的分型面選擇方案,不能滿足分型面應(yīng)選在塑件外形最大輪廓處,并且會過多增加開模行程。由于塑件兩端帶有螺紋,模具兩側(cè)都需設(shè)置抽芯機(jī)構(gòu),勢必成倍增大模具結(jié)構(gòu)的復(fù)雜程度,增加成本。
3.2 確定型腔的排列方式
本塑件體積和質(zhì)量較大,在注塑時采用一模一件,即模具只需要一個型腔,因此此塑件不用設(shè)計型腔的排列方式。
3.3 澆注系統(tǒng)設(shè)計
澆注系統(tǒng)的設(shè)計原則是:排氣良好;流程短;防止型芯和嵌件變形;整修方便;防止塑件翹曲變形;合理設(shè)計冷料穴或溢料槽;澆注系統(tǒng)的斷面積和長度應(yīng)盡量取小值,以減少澆注系統(tǒng)占用的塑料量,從而減少回收料。
3.3.1 主流道設(shè)計
根據(jù)設(shè)計手冊【4】查得XS-ZY-500型注塑機(jī)噴嘴的有關(guān)尺寸:
噴嘴前端孔直徑: =?5mm;
噴嘴前端球面半徑:=18mm;
根據(jù)模具主流道與噴嘴的關(guān)系:
=+(1~2)mm
D=+(0.5~1)mm
取主流道球面半徑R=19mm;
主流道的小端直徑d= ?6mm.
為了便于將凝料從主流道中拔出,將主流道設(shè)計成圓錐形,其斜度為3o。經(jīng)換算得主流道大端直徑D=10.5mm,為了使熔料順利進(jìn)入分流道,可在主流道出料端設(shè)計半徑r=8mm的圓弧過渡。
3.3.2 分流道設(shè)計
分流道的形狀及尺寸,應(yīng)根據(jù)塑件的體積、壁厚、形狀的復(fù)雜程度、注塑速率、分流道長度等因素來確定。本塑件形狀簡單,熔料填充型腔比較容易,且又是單腔注塑模,所以不用分流道。
3.3.3 澆口設(shè)計
澆口應(yīng)根據(jù)塑件的成型要求、型腔的排列方式及模具結(jié)構(gòu)來設(shè)計。該塑件采用一模一腔,無分流道,應(yīng)選用直澆口。查表初選尺寸D=10.5mm,L=55mm,試模時修正。
3.3.4 定位環(huán)、主流道襯套的設(shè)計
定位環(huán)與注塑機(jī)定模板中心的定位孔相配合,其作用是為了使主流到與噴嘴和料筒對中。本題采用的分型方案使得構(gòu)成型腔的那部分主流道襯套形狀復(fù)雜,不易加工,因此本題中不用主流道襯套。直接用定位環(huán)定位,其結(jié)構(gòu)和尺寸見裝配圖上件4。
3.4 抽芯機(jī)構(gòu)設(shè)計
從結(jié)構(gòu)分析及分型面的選擇,可知成型該塑件內(nèi)表面的型芯垂直于脫模方向,阻礙成型后塑件從模具脫出。因此成型該塑件內(nèi)表面的型芯必須設(shè)計成活動的型芯,即須設(shè)置抽芯機(jī)構(gòu)。本模具采用斜導(dǎo)板抽芯機(jī)構(gòu)。
3.4.1 確定抽拔距
抽芯距一般應(yīng)大于成型孔(或凸臺)的深度,本題中成型孔的深度為220mm,另加3~5mm的抽芯安全系數(shù),可取抽拔距S抽=225mm。
3.4.2 確定斜導(dǎo)板傾角
斜導(dǎo)板的傾斜角α是斜抽芯機(jī)構(gòu)的主要技術(shù)數(shù)據(jù)之一,它與抽拔力與抽芯距有直接關(guān)系。一般取α=15o~25o,本題取α=24o。
3.4.3 確定斜導(dǎo)板的尺寸
斜導(dǎo)板上導(dǎo)滑槽的導(dǎo)滑長度L取決于抽芯距及其傾斜角度,其計算根據(jù)公式:
L=S抽/sin24o
=562.5mm
該斜導(dǎo)板是用四個內(nèi)六角螺釘固定在上模座上,見裝配圖上件2和件7。其寬度按上模座寬度選取。
3.4.4 斜導(dǎo)槽、導(dǎo)滑套與導(dǎo)滑槽設(shè)計
1)斜導(dǎo)槽與軸的連接方式設(shè)計。本題側(cè)向抽芯機(jī)構(gòu)是芯棒,抽芯距較長,不使用滑塊,因此,用軸帶動芯棒向外移動,實現(xiàn)抽芯。本題中軸是靠軸承在導(dǎo)板的斜槽內(nèi)滾動來帶動芯棒的。查相關(guān)資料,軸承可選用6208型的深溝球軸承,其結(jié)構(gòu)見裝配圖上件21。
2)確定導(dǎo)滑套的尺寸。為使模具結(jié)構(gòu)緊湊,降低模具裝配復(fù)雜程度,擬采用整體式導(dǎo)滑套。為提高導(dǎo)滑套的導(dǎo)向精度,裝配時可對導(dǎo)滑槽或軸采用配磨、配研的裝配方法。
導(dǎo)滑套是對芯棒起導(dǎo)滑作用的,與芯棒采用H7/h6的間隙配合。導(dǎo)滑套的外徑為?140mm,凸肩為?160mm。導(dǎo)滑套的長度根據(jù)芯棒的長度和抽芯距來確定,取=450mm。其結(jié)構(gòu)見零件圖04。
3)導(dǎo)滑槽的導(dǎo)滑長度設(shè)計。導(dǎo)滑槽是直接在開在導(dǎo)滑套上,讓軸帶動芯棒滑動的。導(dǎo)滑長度沒有嚴(yán)格要求,能順利完成側(cè)向抽芯就行,不宜過長,以免浪費材料,增加成本。為了防止芯棒滑出導(dǎo)滑套,在導(dǎo)滑套上,導(dǎo)滑槽不能開通。其結(jié)構(gòu)見零件圖04。
3.5 成型零件結(jié)構(gòu)設(shè)計
成型零件的結(jié)構(gòu)設(shè)計,是以成型符合質(zhì)量要求的塑料制品為前提,但必須考慮金屬零件的加工性及模具制造成本。
3.5.1 凹模結(jié)構(gòu)設(shè)計
本模具采用一模一腔的結(jié)構(gòu)形式,考慮加工的難易程度和材料的價值利用等因素,凹模擬采用整體式結(jié)構(gòu)。本題中由于側(cè)向抽芯距長,采用如圖3-1的分型方案,型腔復(fù)雜,直接將型腔開在動、定模板上,減少制造時間,提高效率,降低成本。
根據(jù)本例主流道與澆口的設(shè)計要求,主流道與澆口均設(shè)在上凹模上 ,其結(jié)構(gòu)見零件圖03和05。
3.5.2 凸模結(jié)構(gòu)設(shè)計
凸模主要是與凹模相結(jié)合構(gòu)成模具型腔,其凸模就是芯棒,其結(jié)構(gòu)形式見零件圖06。
3.5.3 螺紋型環(huán)設(shè)計
螺紋型環(huán)是在模具閉合前裝在型腔內(nèi),成型后隨制件一起脫模,在模外卸下。該塑件所用的分型方案,塑件可以從型環(huán)中直接脫出,不需在模外卸下,所以該型環(huán)用內(nèi)六角螺釘固定在凹模上,即本題的絲哈夫,見裝配圖上件16。常見的螺紋型環(huán)有整體式和組合式兩種結(jié)構(gòu)。本題采用組合式的螺紋型環(huán),用內(nèi)六角螺釘分別固定在上下凹模上。
第4章 模具設(shè)計的有關(guān)計算
本模具中成型零件工作尺寸計算時,均采用平均尺寸、平均收縮率、平均制造公差和平均磨損量來計算。查表【1】的HPVC的收縮率為0.1%—1%,取其平均收縮率,得=(0.1+1)%/2=0.55%,模具制造公差=(為塑件公差)。
4.1 型腔和型芯工作尺寸計算
型腔和型芯工作尺寸計算見表1。
表4-1 型腔和型芯工作尺寸計算【5】【7】
類別
序號
模具零件名稱
塑件尺寸
計算公式
型腔或型芯工作尺寸
型
腔
的
計
算
1
上凹模
2
1
下凹模
2
1
上螺紋型環(huán)
128
123.5
2
1
下螺紋型環(huán)
2
型
芯
的
計
算
1
型芯
4.2 型腔側(cè)壁厚度和底板厚度計算
4.2.1 上下凹模型腔側(cè)壁厚度計
該塑件是在中間分型的,結(jié)構(gòu)對稱,因此,上下凹模鑲塊也對稱相同。本題采用組合式圓形型腔,根據(jù)組合是圓形型腔側(cè)壁厚度計算公式【1】進(jìn)行計算。
式中 p=40MPa(選定值);
r=60mm;
E=2.1×105 MPa;
=0.06~0.08mm,取=0.65mm。
代入公式計算得
=0.02mm
本題的型腔直接開在動、定模板上,它們的尺寸較大,肯定滿足側(cè)壁厚度要求。
4.2.2 上下凹模型腔底板厚度計算
根據(jù)組合式型腔底板厚度計算公式【1】進(jìn)行計算。
式中 p=40MPa;
E=2.1×105MPa;
r=60mm;
=0.06~0.08mm,取=0.65mm。
代入公式計算得
=3.54mm
本題的型腔直接開在動、定模板上,它們的尺寸較大,肯定滿足底板厚度要求。
第5章 模具冷卻與加熱系統(tǒng)的計算
查手冊得本塑件在注射成型時要求模具溫度在30~60℃左右,要求的模溫不高,可不設(shè)加熱系統(tǒng),利用熔融塑料的余熱使模具升溫,達(dá)到要求的工藝溫度。是否需要冷卻系統(tǒng)可作如下設(shè)計計算:
設(shè)定模具平均工作溫度為40℃,用20℃ 的常溫水作為模具冷卻介質(zhì),其出口溫度為30℃,產(chǎn)量為(初算每2分鐘一件)20kg/h。
(1)求塑件在硬化時每小時釋放的熱量Q3,查有關(guān)文獻(xiàn)【1】得硬質(zhì)聚氯乙烯的單位熱流量為J/kg
J/kg
J/kg
(2)求冷卻水的體積流量V
=
由體積流量V查表【1】可知所需的冷卻水管直徑為?8mm。
第6章 模具閉合高度的確定
在支撐和固定零件的設(shè)計中,根據(jù)經(jīng)驗確定:定模板:=125mm,動模板: =100mm。
根據(jù)推出行程和推出機(jī)構(gòu)的結(jié)構(gòu)尺寸確定模腳:=80mm,見圖4。
因而模具閉合高度 :
=++
=125mm+100mm+90mm
=315mm
圖6-1 長接頭注塑模的閉合高度
第7章 注塑機(jī)有關(guān)參數(shù)的校核
本模具的外形尺寸為355mm×400mm×315mm. XS-ZY-500型注塑機(jī)模板最大安裝尺寸為540mm×440mm,故能滿足模具的安裝要求。
由上述計算模具的閉合高度=305mm,XS-ZY-500型注塑機(jī)所允許模具的最小厚度=300mm,最大厚度=450mm,即模具滿足的安裝條件。
≤≤
由于該塑件的側(cè)向分型抽芯距較大,增加了開模距離,其計算根據(jù)公式:
===133mm
經(jīng)查資料XS-ZY-500型注塑機(jī)的最大開模行程S=500mm,滿足下式頂出塑件的要求:
=133+10
=143mm
因此,該注塑機(jī)的開模行程足夠。
經(jīng)驗證,XS-ZY-500型注塑機(jī)能滿足使用要求,故可采用。
第8章 模具裝配
8.1 模具安裝
(1)清理模板平面定位孔及模具安裝面上的污物,毛刺。
(2)因本模具的外型尺寸不大,故采用整體安裝法。先在機(jī)器下面兩根導(dǎo)軌上墊好木板,模具從側(cè)面進(jìn)入機(jī)架間,定模入定位孔,并放正,慢速閉合模板,壓緊模具,然后用壓板或螺釘壓緊定模,并初步固定動模,然后慢速開閉模具,找正動模,應(yīng)保證開閉模具時平衡,靈活,無卡住現(xiàn)象,然后固定動模。
(3)調(diào)節(jié)鎖模機(jī)構(gòu),保證有足夠的開模距及鎖模力,使模具閉合適當(dāng)。
(4)慢速開啟模板直至模板停止后退為止,調(diào)節(jié)頂出裝置,保證頂出距離。開閉模具觀察頂出機(jī)構(gòu)運(yùn)動情況,動作是否平衡,靈活,協(xié)調(diào)。
(5)模具裝好后,等料筒及噴嘴溫度上升到距預(yù)定溫度20--30℃,即可校正噴嘴與澆口套的相對位置及弧面接觸情況,可用一紙片放在噴嘴與澆口套之間,觀察兩者接觸印痕,檢查吻合情況,須使松緊合適,校正后擰緊注射座定位螺釘,緊固定位。
(6)開空車運(yùn)轉(zhuǎn),觀察模具各部分運(yùn)行是否正常,然后才可注射試模。
8.2模具工作原理
本模具的總裝圖見裝配圖所示。非標(biāo)準(zhǔn)件工作圖見零件圖。
本模具的工作原理:模具安裝在注塑機(jī)上,定模部分固定在注塑機(jī)的定模板上,動模固定在注塑機(jī)的動模板上。合模后,注塑機(jī)通過噴嘴將熔料經(jīng)流道注入型腔,經(jīng)保壓、冷卻后塑件成型。開模時動模部分隨動模板一起運(yùn)動漸漸將分型面打開,與此同時軸承21在導(dǎo)板的斜槽內(nèi)滾動,使軸20帶動芯棒18向外移動,實現(xiàn)抽芯。當(dāng)芯棒18完全脫離塑件后,動模停止運(yùn)動,在注塑機(jī)頂出裝置作用下,推動頂板11運(yùn)動并驅(qū)動頂桿將塑件從動模型腔中脫出。合模時,隨著分型面的閉合芯棒18復(fù)位至型腔,同時復(fù)位桿也對頂板11進(jìn)行復(fù)位。
8.3 注塑問題及其解決方法
通過試模塑件上常會出現(xiàn)各種弊病,為此必須進(jìn)行原因分析,排除故障。造成次廢品的原因很多,有時是單一的,但經(jīng)常是多個方面綜合的原因。需按成型條件,成型設(shè)備,模具結(jié)構(gòu)及制造精度,塑件結(jié)構(gòu)及形狀等因素逐個分析找出其中主要矛盾,然后再采取調(diào)節(jié)成型條件,修整模具等方法加以解決。首先,在初次試模中我們最常遇到的問題是根本得不到完整的樣件。常因塑件被粘附于模腔內(nèi),或型芯上,甚至因流道粘著制品被損壞。這是試模首先應(yīng)當(dāng)解決的問題。
8.3.1 粘著模腔
制品粘著在模腔上,是指塑件在模具開啟后,與設(shè)計意圖相反,離開型芯一側(cè),滯留于模腔內(nèi),致使脫模機(jī)構(gòu)失效,制品無法取出的一種反常現(xiàn)象。其主要原因是:
(1)注射壓力過高,或者注射保壓壓力過高。
(2)注射保壓和注射高壓時間過長,造成過量充模。
(3)冷卻時間過短,物料未能固化。
(4)模芯溫度高于模腔溫度,造成反向收縮。
(5)型腔內(nèi)壁殘留凹槽,或分型面邊緣受過損傷性沖擊,增加了脫模阻力。
8.3.2 粘著模芯
(1)注射壓力和保壓壓力過高或時間過長而造成過量充模,尤其成型芯上有加強(qiáng)筋槽的制品,情況更為明顯。
(2)冷卻時間過長,制件在模芯上收縮量過大。
(3)模腔溫度過高,使制件在設(shè)定溫度內(nèi)不能充分固化。
(4)機(jī)筒與噴嘴溫度過高,不利于在設(shè)定時間內(nèi)完成固化。
(5)可能存在不利于脫模方向的凹槽或拋光痕跡需要改進(jìn)。
8.3.3 粘著主流道
(1)閉模時間太短,使主流道物料來不及充分收縮。
(2)料道徑向尺寸相對制品壁厚過大,冷卻時間內(nèi)無法完成料道物料的固化。
(3)主流道襯套區(qū)域溫度過高,無冷卻控制,不允許物料充分收縮。
(4)主流道襯套內(nèi)孔尺寸不當(dāng),未達(dá)到比噴嘴孔大0.5~1 ㎜。
(5)主流道拉料桿不能正常工作。
一旦發(fā)生上述情況,首先要設(shè)法將制品取出模腔(芯),不惜破壞制件,保護(hù)模具成型部位不受損傷。仔細(xì)查找不合理粘模發(fā)生的原因,一方面要對注射工藝進(jìn)行合理調(diào)整;另一方面要對模具成型部位進(jìn)行現(xiàn)場修正,直到認(rèn)為達(dá)到要求,方可進(jìn)行二次注射。
8.3.4 成型缺陷
當(dāng)注射成型得到了近乎完整的制件時,制件本身必然存在各種各樣的缺陷,這種缺陷的形成原因是錯綜復(fù)雜的,一般很難一目了然,要綜合分析,找出其主要原因來著手修正,逐個排出,逐步改進(jìn),方可得到理想的樣件。下面就對度模中常見的成型制品主要缺陷及其改進(jìn)的措施進(jìn)行分析。
1)注射填充不足
所謂填充不足是指在足夠大的壓力、足夠多的料量條件下注射不滿型腔而得不到完整的制件。這種現(xiàn)象極為常見。其主要原因有:
(1)熔料流動阻力過大
這主要有下列原因:主流道或分流道尺寸不合理。流道截面形狀、尺寸不利于熔料流動。盡量采用整圓形、梯形等相似的形狀,避免采用半圓形、球缺形料道。熔料前鋒冷凝所致。塑料流動性能不佳。制品壁厚過薄。
(2)型腔排氣不良
這是極易被忽視的現(xiàn)象,但以是一個十分重要的問題。模具加工精度超高,排氣顯得越為重要。尤其在模腔的轉(zhuǎn)角處、深凹處等,必須合理地安排頂桿、鑲塊,利用縫隙充分排氣,否則不僅充模困難,而且易產(chǎn)生燒焦現(xiàn)象。
(3)鎖模力不足
因注射時動模稍后退,制品產(chǎn)生飛邊,壁厚加大,使制件料量增加而引起的缺料。應(yīng)調(diào)大鎖模力,保證正常制件料量。
2)溢邊(毛刺、飛邊、批鋒)
與第一項相反,物料不僅充滿型腔,而且出現(xiàn)毛刺,尤其是在分型面處毛刺更大,甚至在型腔鑲塊縫隙處也有毛刺存在,其主要原因有:
(1)注射過量
(2)鎖模力不足
(3)流動性過好
(4)模具局部配合不佳
(5)模板翹曲變形
3)制件尺寸不準(zhǔn)確
初次試模時,經(jīng)常出現(xiàn)制件尺寸與設(shè)計要求尺寸相差較大。這時不要輕易修改型腔,應(yīng)行從注射工藝上找原因。
(1)尺寸變大
注射壓力過高,保壓時間過長,此條件下產(chǎn)生了過量充模,收縮率趨向小值,使制件的實際尺寸偏大;模溫較低,事實上使熔料在較低溫度的情況下成型,收縮率趨于小值。這時要繼續(xù)注射,提高模具溫度、降低注射壓力,縮短保壓時間,制件尺寸可得到改善。
(2)尺寸變小
注射壓力偏低、保壓時間不足,制在冷卻后收縮率偏大,使制件尺寸變小;模溫過高,制件從模腔取出時,體積收縮量大,尺寸偏小。此時調(diào)整工藝條件即可。
通過調(diào)整工藝條件,通常只能在極小范圍內(nèi)使尺寸京華,可以改變制件相互配合的松緊程度,但難以改變公稱尺寸。
8.3.5 調(diào)整措施
調(diào)整時應(yīng)注意調(diào)節(jié)進(jìn)料速度,增加排氣孔,正確設(shè)計澆注系統(tǒng)。注意控制成型周
期。
第9章 模具典型零件機(jī)械加工工序卡
在此僅對芯棒,定模板的加工工藝進(jìn)行分析。
(1) 芯棒。芯棒加工工藝過程見表9-1。
表9-1 芯棒加工工藝過程
序號
工序名稱
工序內(nèi)容
1
下料
120mm×460mm
2
車
粗車芯棒頂部端面,粗車外圓面至尺寸115455mm。
半精車芯棒至112452,倒245角,
鏜60圓孔的預(yù)孔
3
熱處理
淬火、回火,達(dá)到52~55HRC
4
磨
磨型芯各端面及110.48450.02 mm,其中外圓與工作端面,即Ra0.1的表面,留鉗工研磨余量0.02mm,(按圖紙最終尺寸加工)
5
鉗
研磨拋光工作面,使11.46450mm,60mm兩個尺寸達(dá)圖樣要求
表9-2 動模板加工工藝過程
序號
工序名稱
工序內(nèi)容
1
備料
棒料
2
鍛造
405mm360mm130mm
3
熱處理
退火
4
銑
銑六個面至尺寸400.5mm355.55mm125.5mm
5
銑
用數(shù)控銑床銑型腔槽118.96,及各個配合孔158.2、160、110.5(留0.05mm精加工余量)
6
平磨
磨六面至尺寸400mm355mm125mm,保證上下平面與四平面互相垂直,垂直度為0.005mm
7
鉗
以上下平面及一對互相垂直的側(cè)基面為基準(zhǔn)畫各孔中心線
8
車(鏜)
按圖紙要求加工2-16mm、20mm、 40mm、24mm的孔(留0.05mm磨量)
9
鉆
鉆、鉸4-M16mm孔
10
鉗
配鉆4-M16螺紋底孔,并攻絲到滿足要求
11
淬火
淬火、回火達(dá)52-55HRC
12
平磨
磨上下面及8工序留下的余量到圖紙要求
13
銑
用數(shù)控銑床精加工工序5的余量
14
鉗
研型腔Ra0.1并拋光
小 結(jié)
這次畢業(yè)設(shè)計是我們進(jìn)行完了三年的模具設(shè)計與制造專業(yè)課程后進(jìn)行的,它是對我們學(xué)完三年來所學(xué)課程,繼而進(jìn)入工作崗位獨立工作前的最后一次深入、系統(tǒng)的綜合性的復(fù)習(xí),也是一次理論聯(lián)系實踐的訓(xùn)練。它在我們的學(xué)習(xí)中占有重要的地位。
通過這次設(shè)計使我在復(fù)習(xí)先修知識的同時又學(xué)到了許多新知識,對一些原來一知半解的理論也有了進(jìn)一步的的認(rèn)識。特別是原來所學(xué)的一些專業(yè)基礎(chǔ)課:如機(jī)械制圖、模具材料、公差配合與技術(shù)測量等有了更深刻的理解,使我進(jìn)一步的了解了怎樣將這些知識運(yùn)用到實際的設(shè)計中,同時還使我更清楚了模具設(shè)計過程中要注意到的問題。如怎樣使制造的模具既能滿足使用要求又不浪費材料,保證加工的經(jīng)濟(jì)性,加工工藝的合理性。
由于能力有限,設(shè)計中難免有疏漏之處,懇請老師給予批評指正。
致 謝
三年的大學(xué)生活一晃而過,我即將離開可敬的老師和熟悉的同學(xué)踏入社會中去。在這畢業(yè)之際,畢業(yè)設(shè)計是最后一堂課,是走入社會,參加工作前的最后一次有意義的實習(xí)。
在學(xué)校中,我們主要學(xué)的是理論性的知識,而實踐性很欠缺,而畢業(yè)設(shè)計就相當(dāng)于實戰(zhàn)前的一次演練。通過畢業(yè)設(shè)計可是把我們以前學(xué)的專業(yè)知識系統(tǒng)的連貫起來,使我們在溫習(xí)舊知識的同時也可以學(xué)習(xí)到很多新的知識;這不但提高了我們解決問題的能力,開闊了我們的視野,在一定程度上彌補(bǔ)我們實踐經(jīng)驗的不足,為以后的工作打下堅實的基礎(chǔ)。
由于水平有限,經(jīng)驗不足,因此,在設(shè)計中難免要遇到很多難題。但有了課程設(shè)計的經(jīng)驗,老師的不時指導(dǎo)和同學(xué)的熱心幫助,我順利完成了畢業(yè)設(shè)計。畢業(yè)設(shè)計雖然很辛苦,但是在設(shè)計中不斷思考問題,研究問題,咨詢問題,一步步提高了自己,一步步完善了自己。同時也汲取了更完整的專業(yè)知識,鍛煉了自己獨立設(shè)計的能力,使我受益匪淺,我相信這些經(jīng)驗對我以后的工作一定大有益處。
在這里感謝各位老師和幫助我的同學(xué),特別是我的指導(dǎo)老師楊占堯教授在這一段時間給予無私的幫助和指導(dǎo),并向他們致以深深的敬意,以后到社會上我一定努力工作,不辜負(fù)他們給予我的知識和對我們寄予的厚望!
參考文獻(xiàn)
[1] 楊占堯.塑料注塑模結(jié)構(gòu)與設(shè)計.北京:清華大學(xué)出版社,2004
[2] 屈華昌.塑料成型工藝與模設(shè)計.北京:機(jī)械工業(yè)出版社,1996
[3] 王孝培.塑料成型工藝及模具簡明手冊.北京:機(jī)械工業(yè)出版社,2000
[4] 曹宏深,趙中治.塑料成型工藝與模具設(shè)計.北京:機(jī)械工業(yè)出版社,1993
[5] 吳宗澤.機(jī)械設(shè)計師手冊.北京:機(jī)械工業(yè)出版社,2002
[6] 張克惠.注塑模設(shè)計.西安:西北工大出版社,1995
[7] 賈潤禮,程志遠(yuǎn).實用注塑模設(shè)計手冊.北京:中國輕工業(yè)出版社,2000
[8] 寇世瑤.機(jī)械制圖.
[9] 翟德梅.模具制造技術(shù).
[10] 高為國.模具材料.北京:機(jī)械工業(yè)出版社,2005
第 27 頁 共 27 頁
附錄
外文資料
TEMPERATURE CONTROL
P. H. J. Ingham
Marketing Manager ,Eurotherm Ltd,Worthing,Sussex,UK
SUMMARY
Commercial plastic materials are organically based and are therefore heatsensitive .Accurate temperature control of melt processes such as injection moulding is therefore necessary if problems caused by thermal degradation are to be avoided.
The injection moulding process is considered form a temperature controlriewpoint and some of the control methods or techniques are described.since it should not be forgotten that good temperature control can lend to materials and energy savings.
1 INTRODUTION
The injection moulding process is concerned with the efficient conversion of plastics raw material into moulded product of acceptable standards.Some of ths parameters which determine acceptability are weight,dimensions,colour and stenght,all of which can be affected by the conditions under which the material is processed.Having established by the conditions for thwese parameters so as to deermine acceptability,limits can be set for the conditions under which the material is processed.One of the most important parameters contributing to the correct operation of an injection moulding machine is temperature.All plastics materials can be correctly processed only within a certain range of temperatures which varies from materialFor some mateials and mould types the band isvery small and for others it can be quite wide.
Any attempt to define the limits within which the product is acceptable determines the need for some form of control.There are a number of types of control which,if applied correctly,can lead to adequate performance.Significant material and energy savings can be achieved by correctly pplying the right type of control equipment.The reliability of the system and the degree of operator supervision required also depend very largely on the balance struck between initial cost and performance.
It is the purpose of this chapter to examine the injection moulding machine from a temperature control viewpoint and to outline some of the control methods can be used ,together with advantages and disadvantages.
2 THE PROCESS
2.1 Machine Zoning
From a control viewpoint,an injection moulding machine consists of a number of zones (each equipped with a means of measauring the temperature) and a controller,which compares the measured value of the set-point and controls the heat input to the zone in such a way as to remove any different between the heat input to the zone in such a way as to remove any difference between the tow. Yu dividing the machine into a number of zones the different temperature requirements of different zones and their different heat input needs can most easily be met (Fig.1).
For this purpose a typical small machine may have three or four barrel zones and a nozzle one. The zones nearest to the material feed hopper are where the plastic is melted and thus require fairly large heat inputs. However, in the zones hearest to the nozzle, the heat produced, by the rise in pressure needed to force the plastic into the mould, means that relatively little additional heat input is requied when the machine is running. Indeed, if the machine cycle very short, with some materials it may be that more heat is generated than required to maintain the temperature, which will then rise uncontrollably mless some form of additional cooling is applied.
2.2 Thermocpuple Location
Considering again the barrel zones:these consist of a metal arrel with wall thickness sufficient to withstand the high pressures produced during the mjection cycle. The most common form of heating is electrical and is ipplied using band heaters strapped around the barrel (Fig.2). A controller of any kind can only control the temperature at the point of measurement. Ideally this will be as deep into the barrel wall as possible, since it is the temperature of the plastic which is required and not that of the barrel. Plastic is a poor thermal conductor and depending on whether the net heat dow is into or out of the plastic, a thermocouple deep into the barrel wall will register a temperature above or below the actual temperature. If the measuring element is shallow or on the barrel surface, the difference between the measured and actual melt temperatures can be very large. For any given conditions of operation there will be a more or less fixed difference between the melt and measured temperatures and acceptable produce may be produced. If ,however, the conditions, e.g. machine speed or ambient temperature, change, this may give rise to a melt temperature which does not result in the production of acceptable product. It is therefore important to place the thermocouple as close to the melt as possible , i.e. deep the barrel.
2.3 Temperature Overshoot
The resultant system of an electrical band heater strapped around a thick walled barrel with a deep thermocouple is typical of most plastics processing machinery and present a number of control problems. Not only must stable control be achieved during normal running of the machine but acceptable start-up performance must also be achieved. The machine must be brought to its normal operating temperature as quickly as possible and preferably with no overshoot. (Overshoot is said to occur if the temperature is rising or falling at such a rate as it reaches set-point that it does not stop there but continues past by some amount before returning towards set-point again; see Fig.4.)
The basic cause of temperature overshoot in the system is multiple heattransfer lags, i.e. where the heat generated electrically first raises the temperature of the heater thermal mass and is then conducted from the second thermal mass to a third and so on, until the heat reaches the point of measurement which, as stated already, is as near as possible to the point in the process to be controlled.
In the simplest cast of multiple heat transfer only two thermal masses would be significantly involved, namely those of the heater and the load. If the thermal mass of each is about the same, this tends to represent about the worst case for overshoots (and hence controllability). Poor heat transfer from heater to load worsens the situation, since the heater temperature (during start-up, for example)can then become very much higher than the load temperature; when the power to the heater is cut off the final temperature reached (ignoring heat losses and assuming equal thermal masses for heater and load) will be the mean of their respective temperatures at the instant when the power is cut off. Thus ,the overshoot in load temperature increases as the heat transfer becomes worse.
A particularly bad case of overshoot (and controllability) occurs where heat is transferred through a considerable thickness of heat-conducting material. This is exactly the situation which is presented by an injection machine barrel with deep set thermocouple. This sort of heat transfer represents in effect an infinite order multiple heat transfer: several minutes can elapse between switch-on of power and a significant change in thermocouple temperature. In fact the response has almost the appearance of a delay (i.e. transport lag ) although there is really a considerable difference between this heart-transfer lag and a true delay. During the time of the heart-transfer lag, heat is being fed into the barrel, so that even if the source of heat were switched off at the instant the deep thermocouple began to respond, the thermocouple temperature would continue to rise as the heat energy already fed in distributed itself evenly throughout the thickness of the barrel wall.
A large part of the total lag can in practice be caused by the heart-transfer lag which occurs with a resistance heater. From the heater element thermal mass, via electrical insulation, to the outer surface of the barrel. For the lag through the barrel wall(or for any similar from the heat transfer) doubling the heart-transfer distance results in four times the lag. Iron, from which most injection machines are made, is a rather poor material for heat transfer: for example similar lag are obtained in aluminium and iron when the distance in aluminium is five times greater.
3. METHODS OF CONTROLLING TEMPERATURE
3.1 Measuring the Temperature
The first item in the control system to consider is the measuring element, of which there are tow basic electrical types: active and passive.
The active type are thermocouples. There are formed by the junction of tow dissimilar metals and give an output voltage proportional to the difference in temperature between the thermocouple and the point of measurement (Fig.3). The fact that the millivolt output of the thermocouple in relation to temperatures is non-linear and that it depends on a stable reference temperature for comparison purposes are factors , Which must be taken into account in the controller. Thermocouples are very robust mechanically. (This is an obvious advantage in the environment of the moulding shop.) They also exhibit good repeatability from example to example of the same type. The two most common types used in plastic processing are both base metal thermocouples and these are nickel chrome/nickel aluminium (Type K) and iron/jconstantan (Type J).
The passive types rely on having a resistance which varies with temperature in a known manner and thus, when fed from a constant current upon temperature. Such elements do not require a reference temperature to be generated by the controller. The commonest are the platinum resistance thermometer (which occupies a larer volume than a thermocouple and is more fragile)and the thermistor(which operates on the same principle and has the same disadvantages).
The thermocouple is by far the most common measuring elcment used in practice. The siting of the thermocouple will depend upon the degree of control required, as will the choice of controller.
3.2 ON/OFF Control
The simplest form of controller provides ON/OFF control of load power. The measured temperature is compared with the set-point and if it is too low, power is applied to the load; if it is too high the power is switched off. In practice there will be a small amount of hysteresis in the controller (mainly so that spurious noise signals on the thermocouple and effects due to mains regulation should not result in rapid ON/OFF chattering of the load power control relay). If the thermocouple and heater are in very close proximity, i.e. there is no appreciable lag, the temperature will cycle with an amplitude somewhat in excess of the controller hysteresis and with the natural period of the system. There will inevitably be some overshoot on start-up because full power will be applied to the load until the set and actual temperatures become equal and any stored energy in the heater will continue to be transferred to the load even after switch-off. It can be seen that if the thermocouple is deep in the barrel (thus measuring the melt temperature more closely) the system lags will be considerably increased and the temperature cycling will be of a longer period and will become much larger. Similar comments apply to the start-up overshoot.
Thus ,in the least demanding circumstances, an ON/OFF controller with a shallow thermocouple may give acceptable results. However, with the large heaters required to give short start-up overshoot will probably be unacceptable for all but the least demanding situations and will be worse if account is taken of correct siting of the thermocouple.
The natural period of the system results from a combination of heater power and location, sensor location, and the thermal mass of the system.
3.3 Proportional Control (P only)
If we take an ON/OFF controller and force the switching of the output within the controller itself (with variable mark: space ratio)at a rate which is higher than the natural period, then we have proportional control. As the measured temperature approaches the set temperature, the relay will switch off(for a short time) the power supplied to the load. This point, at which just less than full power is applied to the load, is the lower edge of the ‘proportional band’. As the actual temperature approaches the set temperature more closely, less and les power is applied to the load until, when the two become equal, the power input is zero. It is general for the proportional band to be downscale of the set-point, i.e. at set-point the power fed to the load is zer..
The proportional band is usually defined as a percentage of the controller set-point scale span. Since the power applied to the load is proportional to the error or difference between actual and measured temperature (a so-called error-actuated system),it follows that if any power is required to maintain the temperature there must be some error in the system. This error is known as offset or droop (Fig.5). Since, on start-up, the load power will first be switched off at a temperature below the set-point, the resultant overshoot will be reduced. With a sufficiently large proportional band and sufficiently rapid cycling of the output power (compared to the system’s natural frequency) the oscillations in temperature will cease eventually. However, this does not necessarily mean that there will be no sart-up overshoot in temperature, but only that the subsequent oscillation will decay to zero amplitude.
英文翻譯
注塑模的溫度調(diào)節(jié)系統(tǒng)
商用塑料是最常用的,但它是熱敏感性材料。如果說因熱引起的問題是可以避免的,那么象注塑模中熔化過程中精確的溫度控制就是有必要的。]
從溫度控制的觀點和一些控制方法和技術(shù)的角度來考慮(這些方法和技術(shù)因不應(yīng)忘記而被敘述),好的溫度控制能節(jié)約和熱能。
一、介紹
注射模過程曾引起一次會議的討論,這次會議為模制產(chǎn)品的塑料原材料制定了可行性標(biāo)準(zhǔn)。一些可行性參數(shù)是重量,尺寸,顏色和強(qiáng)度。所有這些參數(shù)都受材料制造環(huán)境的影響。為了決定其可行性,為這些參數(shù)已經(jīng)建立了相應(yīng)的公差。對注射機(jī)的正確操作起作用的眾多參數(shù)中,最重要的一個參數(shù)是溫度,所有的塑料產(chǎn)品的制造都只有在特定的溫度范圍內(nèi)。這個特定的溫度范圍因材料而異。一些材料的這個溫度范圍相當(dāng)寬,而另一些材料的這個范圍卻相當(dāng)窄。
為使產(chǎn)品在允許溫度限制范圍內(nèi),需要某些形式的溫度控制。如果應(yīng)用正確,這里有大量的類型能導(dǎo)致正確控制形式的操作。通過正確的應(yīng)用控制設(shè)備。能節(jié)省貴重的塑料和能量。系統(tǒng)的現(xiàn)實性和操作者監(jiān)管要求的程度,也很大程度上依賴于最新消耗,運(yùn)輸消耗,工作費用三者之間的平衡。
這章的目的是從溫度控制的角度來檢查注射模具和列舉一些常用的溫控方法以及其優(yōu)點。
二、 過程
2·1 模具的分類
從控制的角度來說,一個注射模具由許多分區(qū)和一個控制部分組成(每一個分區(qū)有一種測量溫度的方法),控制器比較兩者之間的不同測量價值和控制兩者之間的不同,而用某種方法輸入到這個分區(qū)的熱移走。通過劃分模具的分區(qū),能使這些分區(qū)更容易認(rèn)識,不同的分區(qū),要求有不同的溫度和不同的熱輸入(如圖1)為了達(dá)到這個目的,一個典型的小模具就可以有3~4個桶型區(qū)和噴管區(qū)。這些離主流道襯套最近的區(qū)域是塑料要求熔化的地方。因此要求有相當(dāng)大的熱量進(jìn)給。然而,在離主流道襯套最遠(yuǎn)的澆口處,通過增加注射壓力,使塑料和澆口之間產(chǎn)生摩擦熱。這意味著,當(dāng)模具在工作時只需要相當(dāng)小的熱量輸入。如果機(jī)器的循環(huán)周期非常短。某些材料在制造過程中比被要求的熱量產(chǎn)生更多的熱量,為了保持溫度,就需要采用某些形式的冷卻方式應(yīng)用。
2·2 熱電偶的安裝
再考慮這些桶型區(qū):一個型腔應(yīng)具有足夠的壁厚。用以承受足夠的壓力。最平常的加工方法是電加熱和使用一個帶狀的加熱片貼在型腔周圍(如圖2),在任何類型的一個控制器都只能控制一個點的測量溫度的測試,而且盡可能貼近型腔。因為我們需要的是塑料的溫度,而不是型腔的溫度,塑料是熱的不良導(dǎo)體。依靠純熱進(jìn)去塑料,如果熱電偶安放在型腔的表面或非常淺,那么測量值和實際值之間將會有非常大的差異。
任何給出的操作環(huán)境都或多或少的存在實際值和測量值之間的差異。然而如果環(huán)境變化,如模具的運(yùn)動速度和周圍的環(huán)境溫度變化,這都可以影響到工件的熔化溫度。因此,熱電偶的安裝位置要盡可能的靠近型腔的內(nèi)壁。
2·3溫度過調(diào)量
一個具有一個熱電偶的加熱片貼在一個深孔型腔的壁上。它的合模系統(tǒng)是最典型的塑料加工機(jī)械,而且存在著大量的控制問題,不僅在正常的模具工作期間必須完成穩(wěn)定的控制,而且可行的合理的初始操作也必須完成機(jī)械可以在不用調(diào)節(jié)時盡可能完美而迅速地使它達(dá)到正常的操作溫度(如果溫度上升或下降,以某一頻率。就是說它經(jīng)過那點,但不停留在那點,而是在它返回那點時繼續(xù)通過一定數(shù)量的點。在這種情況下,過量調(diào)節(jié)就出現(xiàn)了。如圖4)
在系統(tǒng)中引起過量調(diào)節(jié)的基本原因是,多個熱傳導(dǎo)滯后等產(chǎn)生的殘余熱量。首先,引起受熱物體的溫度上升,然后,傳遞給第二個受熱物體,同時使第二個物體溫度上升,然后從第二個受熱物體傳遞給第三個受熱物體。以次類推直到熱在傳遞過程中達(dá)到控制溫度的點附近。
舉一個最簡單的多個熱傳遞的例子,如果兩個受熱體,如果每個受熱體都是一樣的,那將是過調(diào)量中最糟的。一種情況,沖加熱到裝入的差的熱傳遞使環(huán)境變糟,因為加熱溫度(如在開始時的溫度)。將使最終裝入溫度遠(yuǎn)高于其本身。當(dāng)加熱電源切斷時,最終溫度就達(dá)到了。(忽略溫度損失和假設(shè)加熱熱量和吸收熱量相等)。這將意味著最終電源切斷時,最終各方面的溫度。因此,過調(diào)量作為過調(diào)量作為熱傳遞在裝入溫度上升時變地更糟。
在特別糟的過調(diào)量(可控制)的情況出現(xiàn)在熱傳遞通過熱導(dǎo)體材料的深處,這是實際的環(huán)境。這個環(huán)境是一個具有深的安裝電熱偶的注射模具環(huán)境。這套熱傳遞系統(tǒng)抽繪一個無限次續(xù)的多熱傳遞系統(tǒng)的影響。在打開電源和在熱電偶中的一次重要轉(zhuǎn)變之間需要幾分鐘的時間。實際上,這反映的是一種延時的表現(xiàn)(如傳導(dǎo)滯后),雖然熱傳導(dǎo)滯后和真正的延時之間存在著差異,在熱傳導(dǎo)滯后和真正的延時之間存在著差異,在熱傳導(dǎo)滯后的時間中,熱進(jìn)給到型腔,以至于熱源被切斷的瞬時深的熱電偶開始反應(yīng),當(dāng)熱能已經(jīng)進(jìn)給通過整個型腔壁后來完全地分配本身。
總的滯后的大部分,可以是由于發(fā)生在熱阻傳導(dǎo)體的熱傳導(dǎo)滯后引起,熱阻傳導(dǎo)體從熱的基本發(fā)熱體,經(jīng)過電隔離在型腔外表,因為滯后通過型腔壁(或任何一個類似的熱傳導(dǎo))兩倍的熱傳導(dǎo)距離而產(chǎn)生了四倍的滯后。大多數(shù)注射模具制造用的鋼材對熱傳導(dǎo)是相當(dāng)差的材料。舉一個簡單的例子:當(dāng)在鋁中的距離比在鐵中大五倍時。在鐵和鋁中能得到相同的熱滯后。
三、 溫度控制的方法
3·1溫度的測量
在控制系統(tǒng)中,首先要考慮的一條是測量的元素,它有兩種基本的電子測量類型:主動的和被動的類型。
主動類的是熱電偶,它由兩種不同金屬片和一個外部電壓組成。這個外部電壓與熱電偶和測量點之間的不同溫度相稱(如圖3);熱電偶的毫伏輸出電壓與溫度不成線性關(guān)系,它依賴一個作為比較目的的穩(wěn)定的參考溫度,這一事實都是在控制器里必須考慮的因素,熱電偶具有相當(dāng)強(qiáng)的機(jī)動性(這在模具工廠的環(huán)境中是相當(dāng)有利的)。這些因素也表現(xiàn)好的重復(fù)性。從例子到相同的類型的例子,兩個最常用在塑料加工過程的例子都是金屬熱電偶的基本組合材料,它們是鎳鉻/鎳鋁合金(類型K)和鋼/銅合金(類型J)。
無源類熱電偶,存在一種阻力,這種阻力使溫度不同于眾所周知的那種方式。因此,當(dāng)在恒流電源的作用下,這種阻力將產(chǎn)生電壓,這個電壓依賴于所通過的材料的溫度。最常用的是鉑阻熱電偶(這種熱電偶比以前講的普通熱電偶具有更大的容量,并且更容易碎。)和熱敏電阻(它是用同樣的原理進(jìn)行工作具有同樣多的不利條件)。
熱電偶是在實踐中被大量使用的最常用的測量工具。熱電偶的定線將依賴于要求控制的度數(shù)和所選的溫度控制器。
3·2控制器的開關(guān)
控制器的最簡單的形式提供負(fù)載電源開關(guān)的控制,測得的溫度與安裝點比較,假如溫度太低,負(fù)載電源將參與工作,假如溫度太高,負(fù)載電源見被切斷,在實際中,在控制器中有一些磁滯現(xiàn)象。如果熱電偶和加熱器非常接近,那么這就不存在滯后,溫度將以某種振動進(jìn)行循環(huán)。這個振幅是由控制起的滯后和系統(tǒng)的自然周期引起,因為全功率的電源在要求的溫度和實際溫度相等之前一直提供負(fù)載,所以在開始時有一定的過調(diào)量是不可避免的。很明顯,如果熱電偶在型腔壁的深層(因此測量的熔化溫度更接近)。系統(tǒng)的滯后增大,溫度的循環(huán)周期將變長,振幅將變大,也同樣在開始時有一個過調(diào)量。
因此,一個具有線的熱電偶開/關(guān)控制器可以得出所接受到的結(jié)果,這是起碼的要求。然而具有大的熱電偶的開/關(guān)控制器要求有一個更短的啟動時間。如果計算考慮了這個熱電偶的正確安放位置,那么這個啟動時間過短將可能是對于所有控制器來說是不接受和更糟的。除這起碼的要求。
這套系統(tǒng)的自然時期來源于一個熱電偶能量與位置的聯(lián)合作用,傳感器的位置和系統(tǒng)的熱量集中區(qū)域三個因素。
3·3比例的控制(僅僅是P的控制)
如果我們使用一個開/關(guān)控制器,并且迫使輸出量轉(zhuǎn)換。在控制器內(nèi)部本身有一個頻率,這個頻率高于自然時期的,然后我們將要進(jìn)行一個比例的控制問題。當(dāng)測量的溫度接近安放點的溫度時,繼電器將在短時間內(nèi)切斷提供負(fù)載電源,在比最大電源電壓少一些的這個點是比例帶的最低邊緣,當(dāng)實際溫度接近安放點的溫度時,越來越少的電源電壓進(jìn)給量,直到兩者完全相同時,電源輸入量將變成零。總的一句話來說,對于比例帶到安放點呈降低的比例趨勢。例如在安放點的電量進(jìn)給為零。
比例帶的定義就是一個控制器安放點的范圍段的一個百分率。因為電源負(fù)載的誤差是成比例的,或是實際溫度與測量溫度之間存在著差異(一個所謂的誤差一個實際系統(tǒng)),這產(chǎn)生的后果將是假如任何電源要求保持溫度,這將使在系統(tǒng)中產(chǎn)生某些錯誤,這個誤差就是眾所周知的偏差和下降(如圖5)。然而在開始上升階段,在溫度還低于安放點時,負(fù)載電源將被關(guān)掉,短期內(nèi)的結(jié)果將降低,用一個足夠大的比例帶和足夠快的外部輸出電壓的循環(huán)(與系統(tǒng)本身的自然頻率相比)溫度的波動將最終停止。然而,這并不意味著這里沒有上升的過調(diào)量,而僅僅只是意味著在此以后的波動將減小到振幅為零。