購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
玉米秸稈組織分離機的設計
目 錄
1 引言 1
1.1 機械化組織分離機的目的及意義 1
1.2 機械化還田技術的現(xiàn)狀 1
1.3 機械化組織分離機技術的發(fā)展趨勢 1
2 技術任務書 2
3 設計計算說明書 2
3.1 總體設計 2
3.1.1 傳動機構 3
3.1.2 工作部件 3
3.1.3 組織分離機機刀片的設計幾個問題 4
3.1.4 拖拉機的性能參數(shù) 5
3.1.5 懸掛設計 8
3.2 主要工作部件設計計算 10
3.2.1 基本參數(shù)計算 10
3.2.2 錐齒輪的設計計算 11
3.2.3 皮帶輪的設計計算 15
3.2.4 軸的設計計算 18
3.3 性能的校核 26
3.3.1 爬坡穩(wěn)定性能指數(shù) 26
3.3.2 拖拉機懸掛機構油缸提升能力校核 27
3.4 使用說明書 27
4 標準化審查報告 28
4.1 產(chǎn)品圖樣的審查 28
4.2 產(chǎn)品技術文件的審查 28
4.3 標注件的使用情況 28
4.4 審查結論 28
結論 29
參考文獻 30
致謝 31
玉米秸稈組織分離機設計
摘要 近幾年隨著玉米產(chǎn)量的大幅度的提高,秸稈、根茬也大量增多,隨之出現(xiàn)的問題是清理秸稈、刨根茬,成了農(nóng)民種地前最頭痛的事,為爭時爭工,不影響秋種的進度,有些農(nóng)民只好將秸稈就地焚燒。既浪費資源又污染環(huán)境??梢园呀斩挿鬯楹箐伻鲈诘乩?,既環(huán)保又可以改變土壤的理化性。玉米秸稈組織分離機就是這樣的一種農(nóng)具,本設計采用均力免震法排列刀,工作時由拖拉機采用后懸掛方式進行耕作。刀具使用Y型刀中間采用齒輪傳動和皮帶傳動相結合的方法。
關鍵詞 分離 玉米 設計
畢業(yè)設計說明書外文摘要
Design of the Corn straw counters-field
Abstract
In recent years with the corn yield significant enhancement of straw, root, the increasing number of crop also. The resulting problems is clean up straw, follow chi, became farmers sow the land before headaches. As for work, when does not affect to prepare for the progress of the straw stalk, some farmers had to local burned. Do so just a waste of resources and environmental pollution. We can put it to pieces after the stalks strewn in the field, the environmental protection can alter the soil physicochemical. Corn straw chopper drive is one such farm implements. This design uses shock-free laws are arranged in knife edge, the work by the tractor by way of farming after the suspension. Tool use Y knife among USES the gear transmission and the method of combining the belt transmission.
Keyword Counters-field Corn Design
1 引言
1.1 機械化組織分離機的目的及意義
我國作為一個農(nóng)業(yè)大國,對于田間作業(yè)趨于機械化是一個必然的發(fā)展過程,它可以節(jié)約勞動力和提高經(jīng)濟效益。在北方玉米是一種常見的農(nóng)作物,過去由于認識上、政策上及經(jīng)濟上的原因,基本上農(nóng)民都是在收獲以后直接將秸稈焚燒,這樣不僅造成了資源的浪費,還污染了環(huán)境,隨著科技的發(fā)展,生態(tài)農(nóng)業(yè)是現(xiàn)代農(nóng)業(yè)的發(fā)展方向,作為寶貴資源的秸稈,也開始了被重新利用,而秸稈直接還田就是其中的主要途徑之一。
將秸稈粉碎后,鋪撒在地里有許多作用:①組織分離機補充土壤養(yǎng)分。②組織分離機促進微生物的活動,改善土壤的理化性狀。③可以減少化肥的使用量,從而改善環(huán)境。④還可以改善農(nóng)業(yè)生態(tài)環(huán)境。這樣不僅可以從分利用資源,還可以改善我們生活的環(huán)境。
1.2 機械化還田技術的現(xiàn)狀
由于我國國土遼闊,南北方差異較大,各地區(qū)的耕作制度和農(nóng)藝要求不同,同時作物的秸稈也不同,其物理性能和機械性能差異也很大,這就決定了我國機械化組織分離機技術及配套機具的多樣化。在北方多數(shù)是以拖拉機牽引并驅(qū)動的組織分離機機,把站立的玉米秸稈就地粉碎后鋪撒在地面上,數(shù)日后犁翻耕土地時把晾曬的秸稈翻埋入土。
由于機械化組織分離機技術是利用秸稈最經(jīng)濟最有效的技術,具有較大的經(jīng)濟效益、生態(tài)效益和社會效益,因此外國在研制和生產(chǎn)方面起步較早,發(fā)展較快。尤其是意大利、英國,德國、法國、日本和西班牙等發(fā)達國家在該領域處于領先地位。綜合國外機械化組織分離機技術比較完善,機具品種較多,性能可靠,但價格昂貴。
1.3 機械化組織分離機技術的發(fā)展趨勢
雖然我國農(nóng)具多樣化,但就北方而言現(xiàn)在已經(jīng)在解決秸稈及根茬單項作業(yè)的基礎上將開發(fā)新的聯(lián)合作業(yè)機具,并在一段時間后將會取代單項作業(yè)機具。收割農(nóng)作物和組織分離機機結合,使作業(yè)成本大大降低,靈活度也增加。機械化組織分離機技術得到政府的高度重視和大力支持,雖然還有許多問題但前景還是樂觀的。
2 技術任務書
隨著人們越來越重視可持續(xù)發(fā)展和生態(tài)環(huán)境的保護,農(nóng)業(yè)機械化的裝備將得到進一步的發(fā)展。例如農(nóng)業(yè)保護性耕作機械,秸稈綜合利用裝備。對于組織分離機是重要的秸稈綜合利用,根據(jù)市場調(diào)查粉碎秸稈機一般工作幅寬為1500mm到2000mm之間不等,其動力一般由拖拉機提供,用拖拉機懸掛并驅(qū)動,使農(nóng)具的靈活性增加。由于機械化組織分離機技術是利用秸稈資源最經(jīng)濟,最有效的技術,最具有經(jīng)濟效益,生態(tài)效益和社會效益。因此國外在研制和生產(chǎn)方面起步較早,發(fā)展很快。尤其是意大利、美國、英國、德國、法國、丹麥、日本、西班牙等發(fā)達國家在該領域處于領先地位。意大利的OMARV公司尤為突出,它的產(chǎn)品配套動力26-132kw工作幅寬1.2-6米。刀片轉(zhuǎn)速1950r/m。美國萬國公司(International Harvester Company Co.),美國埃茲拉。隆達爾有限公司在此方面的研究生產(chǎn)水平均很高。此外,國外還研制出拖拉機帶動的臥式轉(zhuǎn)子切碎機,幅寬6m,刀片可更換,轉(zhuǎn)子最高轉(zhuǎn)速2000r/min,外殼上有擋板,使莖稈撒布均勻,同時帶有遇到障礙物的安全機構。綜合國外機械化組織分離機技術,技術比較完善,機具品種多,性能可靠,但價格也昂貴。我們可以借鑒國外現(xiàn)有技術,通過消化吸收,開發(fā)出適合我國國情的產(chǎn)品。
一般土地是由一家為單位的耕種,工作面積不會很大,工作量也小,所以一般配套動力為50到65馬力的拖拉機。根據(jù)以上內(nèi)容綜合得出本人設計一臺外形尺寸為767×1645×876并選用55馬力的拖拉機
3 設計計算說明書
3.1 總體設計
總體設計示意圖如圖1所示
1—箱傳動軸 2—變速 3—皮帶出動部分 4—粉碎機罩殼 5—工作部件
圖1 總體設計示意圖
3.1.1 傳動機構
其功能是將拖拉機的動力傳遞到工作部件,進行粉碎作業(yè),它有萬向聯(lián)軸器傳動軸、齒輪箱和側邊傳動裝置組成。
(1) 萬向聯(lián)軸器傳動軸連接拖拉機動力輸出和齒輪箱輸入軸。安裝時,帶套的夾叉裝在粉碎就輸入軸端,且必須使兩個夾叉的開口處在同一平面內(nèi)。
(2) 齒輪箱:它內(nèi)部裝有一對圓錐齒輪,起改變方向和增速的作用。
(3) 側邊傳動裝置:由三角皮帶輪組成,采用單側邊傳動方式(原因前文已提到),要起傳遞動力的作用,另外也有起過載保護作用和傳動比分配的作用。
3.1.2 工作部件
本機所采用如圖一所示的(d)Y型,采用背靠裝置。其尺寸如圖2所示
圖2 Y型刀示意圖
3.1.3 組織分離機機刀片的設計幾個問題
(1)甩刀刀片形狀的確定:本組織分離機機主要選用Y型 刀片,也可以用其它刀片替換。Y型刀片是L型刀片的改進型,其優(yōu)點體現(xiàn)在:(1)消除應力集中或緩解了拐角處的應力集中;(2)刀片的功耗小,原因是Y型刀切割秸稈斜切,即刀片要省力。所以目前大多數(shù)用于玉米、高粱等高稈作物組織分離機機都采用Y型刀片。此類型刀片已形成標準,代號為ZBB98008-88.
(2)刀片的材料選擇及其熱處理:考慮刀片經(jīng)常與泥土地、秸稈等磨擦,工作條件極其惡劣,所以選材要好,要求有較強的耐 磨性和較強的抗沖擊韌性。本機選 用20CrMnTi,熱處理工藝:將刀片加熱至880―900。c,再保溫10分鐘。然后用10%的NaCl水溶液淬火,最后在180-200。C回火2小時,可達到3.16ha/g的耐磨性和290J/cm以上的抗沖擊韌性。
(3)刀片的排列方式:刀片的排列方式對于秸稈是至關重要的,合理的排列方式不僅能使還田機粉碎質(zhì)量提高,而且還可以是還田機平衡性能好,減輕還田機的震動。目前大多數(shù)組織分離機機采用加配重塊的方法解決振動問題,這樣不僅制造煩瑣,而且配重塊加入后不同程度的影響粉碎質(zhì)量,而甩刀的排列有單螺線排列,雙螺線排列,星形排列,對稱排列幾種,不管哪種排列均應滿足:①刀軸受力均勻,徑向受力平衡。②相鄰兩刀片徑向夾角要大。單雙螺線排列有一個共同的弊病,即在粉碎過程中秸稈測向移動現(xiàn)象嚴重,使還田機有“一頭沉”現(xiàn)象。根據(jù)以上幾種排列方式的利弊得出一種新的排列方法————均力免震法。排列方式如圖3所示
圖3 刀得排列示意圖
特點是:①刀軸受力均勻。②刀軸旋轉(zhuǎn)時不震動,無需加配重塊。
3.1.4 拖拉機的性能參數(shù)
表一 懸掛機構的技術參數(shù)
下拉桿后球鉸孔徑D2
28
下拉桿后球鉸寬度b2
38
鏈接三角形的高度H
530-680
懸掛軸的長度M
800
上拉桿連接銷直徑d1
22
銷孔到臺肩距離l1
102
上拉桿后球鉸直徑D1
22
上拉桿后球鉸寬度b1
58
表二 拖拉機懸掛裝置升降機構的特性
升降機構形式
液壓分置式
液壓油泵型號
CB-32型齒輪泵
分配器形式
型滑閥式
液壓油缸形式
型雙作用式
油缸最大推力(公斤)
推出
7500
懸掛軸的提升能力(公斤)
額定
1100
推入
6250
最大
1500
油缸尺寸及行程(缸徑*最小長度*行程)
懸掛機構形式
球鉸接四連桿機構
安全閥開啟壓
130
農(nóng)具聯(lián)接形式
后置雙軸三點懸掛
表三 拖拉機的參數(shù)
拖拉機的型號
鐵?!?5
后輪配重(公斤)
150(重塊)210(流水)
發(fā)動機額定功率
55馬力
一檔速度、傳動比
1.37 296.89
牽引力(公斤)
1400
二檔速度、傳動比
1.69 241.29
結構重量(公斤)
2900
三檔速度、傳動比
2.15 189.96
最小使用重量
3300公斤
四檔速度、傳動比
3.52 115.54
前輪分配重量
1100公斤
五檔速度、傳動比
4.82 84.41
后輪分配重量
2200公斤
六檔速度
6.32
重心坐標(mm)
七檔速度
7.76
外形尺寸(長寬高)
(mm)
額定功率(馬力)
55
前輪輪距(b)
1200-1800(mm)
額定轉(zhuǎn)速
1500
后輪輪距(b1)
1200-1800(mm)
最大扭矩(公斤/米)
4115
軸距(L)
2493(mm)
離地間隙(h1)
450(mm)
最小轉(zhuǎn)彎距(單邊制動)
3.7(m)
最小轉(zhuǎn)彎距(不制動)
5.75(m)
表四 懸掛機構的技術參數(shù)
下拉桿尺寸
R 800
上拉桿固定點坐標
X2 493
R1 400
Y2 190
下懸掛點間距
M 800
升降臂夾角
α 0
下拉桿固定點
坐標
X1 285
懸掛軸變化范圍
h1 195
Y1 -200
h2 895
B1 245
上拉桿長度
Lmin 535
B2 490
Lmax 800
油缸固定點坐標
X4 438
動力輸出軸坐標
X5 400
Y4 -264
Y5 -62.5
B2 154
B3 0
升降臂轉(zhuǎn)軸坐標
X3 398
提升吊桿長度
L1min 430
Y3 340
L2max 515
懸掛軸在最高點與后輪外援間隙
e 145
拖拉機后輪半徑
r 760
升降臂長度
r1 260
拖拉機后輪中心到地面的距離
Rk 720
r2 140
表五 拖拉機動力輸出軸技術參數(shù)
動力輸形式
半獨立式
位置
后置離地560
旋轉(zhuǎn)方向(朝前進的方向看)
順時針
轉(zhuǎn)速(轉(zhuǎn)/分)
523
花鍵公稱尺寸(鍵數(shù)-外經(jīng)*內(nèi)徑*鍵寬)
8-38×32×6
花間末端到凹端距離
40
花鍵工作長度
76
3.1.5 懸掛設計
牽引點:農(nóng)具牽引裝置和拖拉機機體的連接點。
虛牽引點:懸掛機構上拉桿和下拉桿在縱向垂直面或水平面內(nèi)投影延長的交點,亦稱“瞬時轉(zhuǎn)動中心”。懸掛農(nóng)具工作時,如果作用力的平衡破壞,農(nóng)具就要繞瞬時轉(zhuǎn)動中心轉(zhuǎn)動。
懸掛點:連接懸掛式農(nóng)具和懸掛機構桿件的鉸鏈點。在農(nóng)具懸掛設計中心提到懸掛點時,常常是指鉸鏈點的幾何中心。
連接三角:連接懸掛式農(nóng)具的上、下懸掛點所得到的幾何圖形。
農(nóng)具立柱:通常指連接三角形的高a。
懸掛軸:指懸掛農(nóng)具的橫梁,其兩端德爾軸銷與懸掛機構下拉桿的后球鉸相連。
(1)農(nóng)具和拖拉機的聯(lián)結型式
牽引力:農(nóng)具具有獨立的行走輪。農(nóng)具在運輸或工作時,其重量均由本身的輪子承受。機組的穩(wěn)定性好,對不平地面的適應性強。但機動性較差,金屬消耗最大。多用于各種寬幅,重型農(nóng)具。
懸掛式:農(nóng)具在運輸時全部重量由拖拉機承受。重量輕,結構緊湊,機動性好,效率高。但穩(wěn)定性差,使用調(diào)整較復雜,對地表的適應性不如牽引式和半懸掛式。廣泛應用于各種農(nóng)具,在大部分場合有取代牽引式的趨勢。
半懸掛式:農(nóng)具有自己的行走輪,運輸是承受部分重量,另一部分重量由拖拉機承受,其優(yōu)、缺點介于懸掛式和牽引式農(nóng)具之間,當大型、重型農(nóng)具用懸掛式有困難時可用半懸掛式。
根據(jù)實際情況和以上特點,所以本設計選懸掛式
(2)農(nóng)具在拖拉機上懸掛的位置
后懸掛:特點 農(nóng)具配置在拖拉機后面,增大驅(qū)動輪載荷,提高了牽引性能。拖拉機走在未耕地上,工作后不留輪轍。但不便于觀察作業(yè)情況,運輸時穩(wěn)定性和操作性較差。
前懸掛:農(nóng)具配置在拖拉機前面,拖拉機走在以工作過的地面上,能滿足收獲機械要求,但可能使前輪負荷過大,轉(zhuǎn)向費力或輪胎超載。
中間懸掛:農(nóng)具配置在拖拉機前、后軸之間,便于觀察作業(yè)情況。但裝卸費事,農(nóng)具和拖拉機配套行強,通用性小。
側懸掛:農(nóng)具配置在拖拉機側面,視線好。但橫向穩(wěn)定性較差,不適于配帶較重的農(nóng)具作業(yè)。
分組懸掛:農(nóng)具分幾組分別順次懸掛在拖拉機側面、前面或后面,機組穩(wěn)定性較好。
根據(jù)所設計還田機的特點和以上所說的特點選擇后懸掛。
(3)農(nóng)具在拖拉機上懸掛的方法
單點懸掛:農(nóng)具通過拉桿與拖拉機相連,可以在垂直面內(nèi)一點O自由轉(zhuǎn)動,結構簡單。但農(nóng)具工作性能受地面起伏影響較大,不易控制。拉桿容易和拖拉機發(fā)生干涉,O點的位置選擇不受限制。常在一些簡易的或無專門懸掛系統(tǒng)的拖拉機上用。
兩點懸掛:兩點懸掛點A、B布置在水平面內(nèi),農(nóng)具繞A-B軸線轉(zhuǎn)動桿件,與農(nóng)具剛性連接,相當于兩個單點懸掛并聯(lián)。懸掛機構通常是專用的。用于沒有或不宜采用三點懸掛系統(tǒng)的地方。
三點懸掛:農(nóng)具通過上拉桿和兩個下拉桿與拖拉機三點相連。在垂直面和水平面內(nèi)各有一個瞬時轉(zhuǎn)動中心O1、O2,農(nóng)具上下左右可自由運動。虛牽引點0、O1的位置不受結構限制。O在農(nóng)具入土過程中位置有變化有利于農(nóng)具入土。通用性好,可掛各種農(nóng)具。
根據(jù)本設計的要求,選用三點懸掛,因為通用性好。
(4)農(nóng)具工作位置的調(diào)節(jié)方式和特點
根據(jù)選用懸掛的方式和還田機的特點選用高度調(diào)節(jié)
原理:懸掛機構在農(nóng)具工作中呈自由狀態(tài),對農(nóng)具不起控制作用。農(nóng)具1的工作位置由本身的支持輪2決定。調(diào)節(jié)絲桿可以改變農(nóng)具的工作深度。
特點:工作可靠,便于調(diào)整。農(nóng)具的工作位置不受土壤阻力變化影響,耕深一致性好。支持輪有一定的仿形作用,但輪子本身滾動要消耗動力增加結構重量支持輪下方的局部起伏和下陷深度會改變農(nóng)具的工作位置。
3.2 主要工作部件設計計算
3.2.1 基本參數(shù)計算
(1)傳動比分配
刀軸的工作轉(zhuǎn)速為
所以總轉(zhuǎn)動比
取
(2)功率分配
拖拉機輸出功率
一軸輸出功率
二軸輸出功率
三軸輸出功率
拖拉機輸出轉(zhuǎn)矩
一軸輸出轉(zhuǎn)矩
二軸輸出轉(zhuǎn)矩
三軸輸出轉(zhuǎn)矩
3.2.2 錐齒輪的設計計算
(1)考慮到錐齒輪所受載荷較大,所以決定采用硬齒面閉式傳動,大小齒輪均用20CrMnTi材料。齒面滲碳后淬火,齒面硬度58—62HRC。查圖得
(2)由簡化計算初步選定主要參數(shù)
(查表得)
(查表得)
取
則
(與的誤差不大于5%)
大端模數(shù)
取 m=5mm
取b=34
(3)校核計算
1)按齒面接觸疲勞強度校核
(查表得)
(8級精度及)
(查圖得)
(查表得)
所以安全
2)按齒根彎曲強度校核
(查圖得)
(查圖得)
(查圖得)
(查表得) 安全
(查表得) 安全
表六輪的基本參數(shù)
小齒輪
大齒輪
節(jié)錐角(分度圓錐角)
大端分度圓直徑
85
200
錐距 R
109.25
109.25
齒寬 b
34
34
齒頂高
8.11
8.11
齒根高
2.89
2.89
齒頂高直徑
99.93
206.35
齒頂角
4.25/1.52
4.25/1.52
頂錐角
27.28
71.22
(5)箱座壁厚
δ=0.0125()+1=0.0125(70+125)+18,故取δ=8mm
箱蓋凸緣厚度 ==12mm
箱座凸緣厚度 b==12mm
箱底座凸緣厚度 ==20mm
地腳螺釘數(shù)目n=底凸緣周長之半/200~3004,取n=4
地腳旁連接螺釘直徑 =0.018()+112, 取
蓋與座連接螺栓直徑 =(0.5~0.6), 取
軸承端蓋螺釘直徑 =(0.4~0.5) , 取=6
軸承旁凸臺半徑 =c2=12
鑄造過渡尺寸 k=3,R=5,h=15
大齒輪頂圓與內(nèi)箱壁距離 Δ1>1.2δ, 取Δ1=10mm
齒輪端面與內(nèi)箱壁距離 Δ2>0.5δ, 取Δ2=5mm
軸承端蓋外徑
=D+(5~5.5),
由于結構的特殊性,取D30306=108mm,D30308=135~140mm
3.2.3 皮帶輪的設計計算
(1)基本參數(shù)
傳遞功率
轉(zhuǎn)速
(2)定V帶型號和帶輪直徑
工作情況系數(shù)
計算功率
選帶型號得為C型
小帶輪直徑
大帶輪直徑
取
(3)計算帶長
求取中心距
取
帶長
基準長度 取
(4)求中心距和包角
小帶輪包角
(5)求帶根數(shù)
帶速
傳動比
帶根數(shù)由表得 由表得
由表得 由表得
取Z=7根
(6)求軸上載荷
張緊力
取
對于新安裝的V帶初拉力應為1.5(F0)min;對于運轉(zhuǎn)后的V帶,初拉力應為1.3(F0)min。帶傳動作用在軸上的壓軸是
由于v<30m/s,故帶輪材料采用HT200可滿足要求,為減輕帶輪的重量,采用輪幅式,
同樣由于大小帶輪直徑小于500mm,因為D2、D3<315,所以由表得
(7)主動輪是的設計計算
取
槽寬
軸徑
所以選擇孔板式。
(8)從動輪的設計計算
取
槽寬
軸徑
取
所以為腹板式
3.2.4 軸的設計計算
(1)一軸的設計與校核
1)求輸出軸上的功率、轉(zhuǎn)速和轉(zhuǎn)矩
2)初步確定軸的最小直徑
先按式(15-3)初步估算軸的最小直徑,選取軸的材料為45鋼,調(diào)質(zhì)處理。根據(jù)表取A0=112,于是得
輸入軸的最小直徑顯然是安裝萬向節(jié)的直徑d1-2,為了使所選的軸直徑d1-2與萬向節(jié)的孔徑相適應。故需同時選擇萬向節(jié)的型號。
查表得,根據(jù)輸入功率為33.0kw,所以選擇帶槽檸檬管節(jié)叉尾部。萬向節(jié)的孔徑d1=50mm,故取d1-2=50mm,l1=30mm。
3)軸的結構設計
①為了滿足萬向節(jié)的軸向定位要求1-2軸段右端需制出一
軸肩,故1-2段的直徑d1-2=57mm。
②初步選擇滾動軸承,因為軸承同時受到徑向力和軸向力的作用,故選用單列圓錐滾子軸承,參照工作要求并根據(jù)d1-2=57mm,由軸承產(chǎn)品目錄中初步選取0基本游隙組,標準精確級的單列圓錐滾子軸承30212,其尺寸為,故d3-4=d7-8=60 mm,而l7-8=33.5mm。左端滾動軸承采用軸肩進行定位,定位軸肩高度為h,
4.2
0.07d,谷取h=7,則軸環(huán)處的直徑d5-6=89mm,軸寬度b>1.4h,取l5-6=12mm。
④取齒輪距箱體內(nèi)壁之距離a=16mm,考慮到箱體的鑄造誤差,在確定滾動軸承位置時,應距箱體內(nèi)壁一段距離s,取s=8mm。已知滾動軸承寬度T=33.5mm,小齒輪的大端分度圓直徑B=85mm。
齒輪、萬向節(jié)與軸的周向定位均采用平鍵鏈接,按d4-5由表查的平鍵截面,鍵槽用鍵槽銑刀加工長為63mm,同時為了保證齒輪與軸配合有良好的中性,故選擇齒輪與軸轂與軸的配合為;同樣萬向節(jié)與軸連接,選用平鍵鍵槽長為25mm。如圖4
圖4 一軸示意圖
⑤軸的強度校核
計算齒輪受力:拖拉機作用在軸上的力
大齒
大齒輪受力 轉(zhuǎn)矩
圓周力
徑向力
軸向力
受力圖如圖5所示
圖5 一軸受力彎矩圖
計算支承反力
水平反力
垂直反力
總彎矩
扭矩
進行校核時通常只校核軸上承受最大彎矩和扭矩的截面的強度根據(jù)以上數(shù)據(jù),以及軸單向旋轉(zhuǎn),扭矩切應力為脈動循環(huán)變應力取a=0.6軸的計算為:
由表得[]=60MPa,因此< []故安全。
(2)二軸的設計和校核
1)
2)初步確定軸的最小直徑。
先初步估算軸的最小直徑,選取軸的材料為45鋼,調(diào)質(zhì)處理,根據(jù)表取A0=112于是得
輸出軸的最小直徑是安裝小齒輪外軸的直徑,所以取,小齒輪輪轂寬為所以取,小齒輪與軸用平鍵連接由于傳動距離較長,所以左右定位用15:1錐度。小錐齒右邊用螺母M30GB54-76定位,電帶輪左邊用螺母M24GB-76,皮帶輪與軸采用聯(lián)接則,如圖6所示
圖6 二軸示意圖
3)二軸的強度校核
N
小輪直徑
N·mm
小輪受力;轉(zhuǎn)矩
N·m
圓周力
N
徑向力
=2135.71N
軸向力
受力圖如圖7所示
圖7 二軸受力彎矩圖
計算支承反力
水平反力
N
垂直力
進行校核時通常只校核軸與承受最大彎矩和扭矩的截面的強度,根據(jù)以上數(shù)據(jù),以及軸單向旋轉(zhuǎn),扭轉(zhuǎn)切應力為脈動循環(huán)變應力取a=0.6
選定軸的材料為45鋼,調(diào)質(zhì)處理由表查得[a]=60Mpa,因為<[a]故安全
(3)刀軸的設計
輸出軸上的功率p3=29.866KW,轉(zhuǎn)速n3=1600r/min,轉(zhuǎn)矩T3=178262.688N·mm
1)初步確定軸的最小徑。
左軸頭的設計
先初步估算軸的最小直徑,選取軸的材料為45鋼,調(diào)質(zhì)處理根據(jù)取A0=112于是得
mm,;因為小帶輪的輪轂B=185mm所以。選取O基本標準精度級得單列圓錐滾子軸承30318尺寸為故
,,。如圖8所示
圖8 左刀軸軸頭示意圖
右軸頭的設計
先初步估算軸的最小直徑,選取軸的材料為45鋼,調(diào)質(zhì)處理取A0=112于是得
由于最小直徑與軸承相連接,故, ,草圖如圖9所示
圖9 右刀軸軸頭示意圖
2)刀軸的校核;
①對無縫鋼管校核
尺寸大小D=140mm,壁厚取5.5,其材料選用20號剛通過冷撥而成。
;
故滿足。
②對軸的校核
由于 皮帶輪直輪;
皮帶輪圓周力
皮帶輪徑向力
刀具作業(yè)時間所受阻力
N
受力如圖10所示
圖10 刀軸受力彎矩圖
計算水平面反力
垂直反力
進行校核時通常只校核承受最大彎矩和扭矩的截面的強度,根據(jù)以上數(shù)據(jù),以及軸單向旋轉(zhuǎn),扭轉(zhuǎn)切應力為脈動循環(huán)變應力取a=0.6軸的計算應為
,因為故安全
3.3 性能的校核
3.3.1 爬坡穩(wěn)定性能指數(shù)
爬坡行駛狀態(tài)下,拖拉機前軸垂直地面的載荷減小,存在翻傾危險。一般道路規(guī)定的最大坡度角,此時機縱向穩(wěn)定性小于爬坡穩(wěn)定性指數(shù)表征,該指數(shù)越大越好。規(guī)定大于20.定義爬坡穩(wěn)定性指數(shù)
(1)
式中:R1Z max-爬坡行駛狀態(tài)下懸掛農(nóng)具時拖拉機前軸垂直地面載荷N
R1z-爬坡行駛狀態(tài),懸掛農(nóng)具時拖拉機前軸垂直地面的載荷N
將得數(shù)帶入式(1)中得
所以機組滿足縱向穩(wěn)定性要求,不需要增加配重塊。
3.3.2 拖拉機懸掛機構油缸提升能力校核
鐵牛-55使用YG-100型油缸,其最大推入推出力PZmax分別為6250N、7500N,油缸提升能力儲備指數(shù)
提升能力儲備達到83%,故懸掛機構油缸提升能力足夠。
3.4 使用說明書
(1)作業(yè)時,應先將還田機提升到刀離地面20—25厘米高度(提升位置不能過高,以免萬向節(jié)偏角過大造成損壞)接合動力輸出軸,轉(zhuǎn)動1—2分鐘,掛上作業(yè)擋,緩慢松放離合器踏板,使用鐵?!?5拖拉機與之相配套,同時操作液壓升降調(diào)節(jié)手柄,使還田機逐步降至所需要的留茬高度,隨之加大油門,投入正常作業(yè)。
(2)作業(yè)時,禁止刀打土,防止無限增加扭矩而引起故障。若發(fā)現(xiàn)刀打土時,應調(diào)整地輪離地高度或拖拉機上懸掛拉桿長度。
(3)操作人員要首先熟悉機具的性能,按使用說明書操作機具。
(4)使用前變速箱內(nèi)應加注30號齒輪油,油面高度以大齒輪浸入油面三分之一為宜。
(5)萬向節(jié)安裝應注意以下三點:
1)應保證機具在工作提升時,方軸與套管及兩端十字架不頂死、又有足夠的配合長度。
2)萬向節(jié)裝配位置及方向應正確,若方向裝錯,會產(chǎn)生響聲及強烈震動,并加劇萬向節(jié)的損壞。
3)與鐵牛55、60配套時,油缸的固定支撐桿應改為扁鐵,以免萬向節(jié)轉(zhuǎn)動時相互碰撞。
4 標準化審查報告
4.1 產(chǎn)品圖樣的審查
玉米秸稈組織分離機的設計已經(jīng)基本完成,現(xiàn)以具備全套圖紙和一線基本數(shù)據(jù),根據(jù)有關規(guī)定,對其進行標注化審查,結果如下:
(1)產(chǎn)品的圖樣完整、統(tǒng)一、表達準確清楚、圖樣清楚。符合GB4440-84、GB-83的規(guī)定。
(2)產(chǎn)品圖樣公差與配合的選擇與標準符合GB/T1800、3-1998的規(guī)定。
(3)產(chǎn)品圖樣的編號符合JB/T5054.5-2000產(chǎn)品圖樣及設計的完整性。
(4)圖紙的標題欄與明細欄符合GB/T10609. 1-1989GB/T10690. 2-1989的規(guī)定。
(5)產(chǎn)品圖樣粗糙度的標注符合GB131-83的規(guī)定。
(6)產(chǎn)品圖樣焊縫的代號符合GB324-80的規(guī)定。
4.2 產(chǎn)品技術文件的審查
(1)產(chǎn)品的技術文件名稱、術語符合ZB/TJ01和0351-90及有關標準的規(guī)定。
(2)量和單位符合GB3100—GB3102-93的規(guī)定。
(3)技術文件所用的編碼符合JB/T8823-1998的規(guī)定。
(4)技術文件的完整性符合JB/T5054.5-2000的規(guī)定及農(nóng)機部門的有關具體要求。
4.3 標注件的使用情況
本設計所用的緊固件均采用標準的螺栓,材料及材料代號也符合國家標準和部頒標準的相關規(guī)定。
4.4 審查結論
經(jīng)過對玉米秸稈組織分離機的標準化審查,認為該設計基本貫徹了國家最新頒發(fā)的各種標準,圖紙和設計文件完整齊全,符合標準化的要求。
結論
還田機的工作幅寬為1500mm,使用55馬力的拖拉機后懸掛工作,工作部分是Y型刀,秸稈成一定傾斜角,喂入性能好。使工作 間隙在定刀處突然減小,甩刀與秸稈將發(fā)生相對運動,利用定刀刃口粉碎。在田間轉(zhuǎn)移行駛狀態(tài)時,各桿參數(shù)不變的情況下,滿足懸掛犁由耕作位置提升到運輸位置,符合各種性能要求。因為本次設計采用了免震法排列甩刀,所以在工作和運輸期間不會出現(xiàn)震動,也不需要增加配重塊,工作幅寬適中輕巧便捷,在田間具有很強的靈活性。本設計的懸掛裝置不是中間懸掛,有些偏差。雖然對工作時有一定的影響,但是不影響重心的位置??傮w不會對裝置的平穩(wěn)行有什么影響。在本次設計中對變速箱的設計時,由于轉(zhuǎn)速變化較大,對齒輪的要求也會增加,這樣就會增加成本。以后可以采用別的方法來改本轉(zhuǎn)速和轉(zhuǎn)動方向。
參考文獻
[1] 紀名剛,陳國定,吳立言.機械設計[M].北京:高等教育出版社2006.5.
[2] 王萬鈞,胡中任.實用機械設計手冊下[M].北京:中國農(nóng)業(yè)機械出版社1985.7.
[3] 中國農(nóng)業(yè)機械化科學研究院編.農(nóng)業(yè)機械設計手冊.北京:機械工業(yè)出版社,1988.4
[4] 李寶筏.農(nóng)業(yè)機械學[M].北京:中國農(nóng)業(yè)出版社2003.8.
[5] 曾正明主編.機械工程材料手冊:金屬材料[M].北京:機械工業(yè)出版社,2003.
[6] 吳宗澤,羅圣國.機械設計課程設計手冊[M].北京:高等教育 出版社2006.5.
[7] 張良成.材料力學[M].北京:中國農(nóng)業(yè)出版社2006.12.
[8] 孫恒,陳作模.機械原理[M].北京:高等教育出版社2006.5.
[9] 王玉順.農(nóng)業(yè)機械專業(yè)課程設計指導書[BD].
[10] 范崇夏,溫琴美主編.國家標準機械制圖應用示例圖冊,中國標準出版社,1988
[11] 孫恒.機械原理[M].北京:高等教育出版社,2006.5
[12] 王金武.互換性與測量技術[M].中國農(nóng)業(yè)出版社2007.12
[13] 黃健求.機械制造技術基礎[M].機械工業(yè)出版社1999
[14] 劉朝儒.機械制圖[M].北京:高等教育出版社2001
[15] 李愛華.工程制圖基礎[M].北京:高等教育出版社2003
致 謝
在這做畢業(yè)設計的過程中,我學到了很多,許多人也幫助了我。首先我要感謝我的指導老師,是他不停的督促我,在設計中告訴我不同的傳動連接方式,使我學會了許多東西,尤其是想問題和解決問題的思路,對我以后有很大的幫助。還有我的同學,隨時都會幫助我,這次最大收獲是掌握了Autocad制圖。謝謝他們幫助了我,使我順利的完成畢業(yè)設計。
- 35 -
2950 Niles Road, StJosepli _ 49085-9659, USA 269.429-0300 fax 26S.4293SS2 hc|#asabe.org
www.asabe.org
An ASABE Meeting Presentation Paper Number: 084469
7760 Cotton Picker
Jason D. Wattonville
John Deere Des Moines Works, Ankeny, Iowa, USA
Written for presentation at the 2008 ASABE Annual International Meeting Sponsored by ASABE Rhode Island Convention Center Providence, Rhode Island June 29 - July 2,2008
Abstract. The John Deere 7760 Cotton Picker, with on-board module building technology, offers customers the next revolution to cotton harvesting machinery. The 7760 breaks through the productivity barrier by way of virtual non-stop harvest. The 7760 can harvest non-stop or continuously pick while forming, wrapping, ejecting and carrying a round module. Building round modules on-board the machine eliminates most field support equipment and the additional labor and costs associated with it. Wrapping the round modules in waterproof plastic wrap provides better protection to preserve cotton fiber and cotton seed quality while containing the cotton in the module so minimal cotton is lost during handling and transport. Some other key features of the 7760 include a Tier III emissions compliant 13.5L engine (500 hp), Pro Drive? powershift transmission, CAN BUS electronics, updated operator station, and improved serviceability and diagnostics.
Keywords. Agricultural Equipment, Cotton, Cotton Harvesters, Farm Machinery, Harvesting Machinery
The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural and Biological Engineers (ASABE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASABE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is ftorn an ASABE meeting paper. EXAMPLE: Author's Last Name, Initials. 2008. Title of Presentation. ASABE Paper No. 08-—. St. Joseph, Mich.: ASABE. For information about securing permission to reprint or reproduce a technical presentation, please contact ASABE at
iutter@asabe.org or 269-429-0300 (2950 Niles Road, St. Joseph, Ml 49085-9659 USA).
7760 Cotton Picker
Introduction
Feedback from a worldwide customer base, representing all segments of the cotton industry, expressed the need to enhance and improve the entire cotton production chain — a chain that includes harvesting, handling, transporting and ginning seed cotton. The overall customer request was to "help us- reduce our labor, reduce our assets, increase our flexibility and help us preserve fiber quality." To provide a solution of increased efficiency and profitability, we needed a systematic paradigm shift (see Figure 1) which involved 3 groups of constituents: farmers, transporters and ginners. Input from those constituents helped define the requirements for a new generation cotton harvester, the John Deere 7760 Cotton Picker. Equipped with built-in module-building technology, the 7760 is a revolutionary cotton-harvesting machine which streamlines the stages of cotton production, from the initial picking of the plant to the completion of the lint bale.
Figure 1, 7760 Harvesting System Approach
project Description
FigCire 2. Current Basket Picker Harvesting Process
Typically, every 6 row cotton picker requires four pieces of support equipment along with labor to operate that equipment (see Figure 2). The labor, cost and management challenges associated with supporting cotton harvest is one of the primary drivers and inspiration for the 7760 and producing round modules on-board the harvester.
Development of producing modules on-board cotton pickers began as far back at the 80’s.
John Deere began experimenting with various packaging techniques to determine optimum size and shape for building cotton modules on-board the cotton harvester.
Since the industry had standardized on conventional modules, early experiments involved partitioning a conventional module builder to evaluate partial size modules. The major issues to be addressed with this concept were: 1) the lack of module integrity; 2) the low package (module) density; 3) the requirement of the vehicle to stop for module unloading. These issues would have contributed to higher transportation costs, lower ginning efficiency and unimproved or reduced harvesting productivity. Additionally, the smaller “mini” modules did not offer improvements in handling, transportation or improvements to fiber preservation. Since these issues resulted in not meeting the requirements that our customers were asking for, the focus was turned to an alternate package type, the round module (bale). The first advantage we saw in the round shape was that it sheds water naturally and lends itself to being covered automatically. A waterproof protective covering completely around the circumference of the round module helps preserve the fiber and reduce seed cotton losses incurred by handling and/or transportation.
Additionally, the round module enables the 7760 to harvest non-stop resulting in a dramatic machine productivity increase of 20% or more. The 7760 eliminates the time spent unloading, waiting for boll buggies, or driving back and forth to a module builder as round modules can be wrapped, ejected, carried and dropped at the turn row without ever needing to stop themachine. The non-stop harvesting function of the 7760 Picker trims approximately five days off of the typical four-week harvest.
The vision for this program is as follows:
? Reduce labor requirements
? Improve asset utilization
? Increase productivity
? Lower harvesting costs
? Preserve cotton fiber and reduce losses
? Increase handling and transportation option
The performance requirements for this vehicle are outlined in Table 1. In many cases, our requirements were based against the current 9996 cotton picker since it has and continues to be the market leader in the 6 row class of cotton pickers.
Table 1: 7760 Performance Requirements
Model
7760
Productivity increase over 9996
20%
Ability to non-stop harvest (up to 4 bale/acre yields at 4.2 mph)
Yes
Fluid capacity
12 hrs Continuous
Improved shift-ability
Yes
Locked wheel during powered brake turn
Yes
Field transport height
Equivalent to 9996
Shipping height
Equivalent to 9996
Flotation
Equal or greater than 9996
Tractive efficiency
Equal or greater than 9996
Tractive effort
Equal or greater than 9996
Standard front dual drive tires
Yes
Option single front drive tires
No
Improved maneuverability over 9996
Yes
Tier III emissions compliant
? Yes
Accumulator Round Module Builder j Wrap Mechanism
Figure 3. Machine Cut-Away
Theory of Operation
'i he following section describes the theory of operation of the round module building process on-board the 7760. Please refer to Figure 3 in this section.
Accumulator
Accumulator technology and monitoring provides an 8.5 mA3 (300 ftA3) chamber or buffer that temporarily stores 1000-1200 lb seed cotton during the wrap and eject process. This buffer is what allows the machine to harvest non-stop.
The accumulator working in conjunction with a double reverse flighted auger ensures an even and uniform flow of cotton is delivered to the round module builder resulting in consistent cylindrical formed round modules in all conditions.
Mounted to the top of the accumulator is the lid extension and hood. It contains perforated screens and fingergrates that provide a means to separate trash from the cotton and also provides self-raising and lowering of the ducts.
Sensors monitor the level of cotton within the accumulator to start and stop the feeding process f「om the accumulator into the round module builder.
Feed rolls convey cotton from the accumulator to the feeder belt. The feed roll metering system is patented technology.
Feeder
Cotton received from the accumulator feed rolls is transported via a rubber belt and compressed between this belt and a laydown roller resulting in a uniform ribbon (or mat) of cotton presented to the entrance or throat of the round module builder. The feeder is also patented technology developed jointly between John Deere and PA Consulting.
Round Module Builder
The round module builder has the capability to automatically build, wrap, eject (on demand), and drop uniform and consistent modules without stopping the machine. The round module builder is powered by an electronic controlled hydrostatic system that operates in conjunction with the feeder system.
The round modules can be variable in size up to the target diameter of 2439 mm (90,’)and a width of 2388mm (94,,)and will weigh approximately 5000 lbs depending on moisture content of the cotton. This size of module will allow unloading on one end of the field in all but extreme operating conditions (high yields and long rows).
Portioned Wrap & Wrap System
The round module covering consists of an industry first portioned wrap (eliminates a cutting mechanism) made of a non-contaminating LLDPE material. LLDPE, is the same material used for lint bale covers today and is recyclable. The wrap will provide package integrity, puncture resistance, and full surface coverage with an edge-wrap feature (CoverEdge?) to provide weather resistant protection for the seed cotton package. Wrap will be provided in rolls that weigh 100 kg (220 lbs) and contain 22 portions.
The wrap mechanism will have the capability to separate the portioned wrap as it is applied to the round module during the wrapping process. Fully loaded, the machine can carry 110 wraps (five rolls). One roll is positioned in the wrap mechanism with four .additional rolls in the magazine. This provides more than enough wraps to complete a 12 hour harvest day.
Handler
The handler carries a round module to the desired field staging location. It also provides a means to lower the round module builder down to an acceptable shipping and field transport height. The rear gate of the round module builder rests in slots located on the handler which guides the builder into this configuration. Figure 4 shows the machine in field transport configuration.
Figure 4. Field transport position
ltAuto" Mode Module Building
"Auto" mode enables the machine via electronics, hydraulics, software and sensors to automatically control the building of each round module. “Auto” mode is engaged by pushing one button on the hydro handle alleviating the complexity of module making.
During the automated round module building process, the comerpost and armrest displays provide clear and concise feedback to the operator indicating exactly where the machine is at in executing the process.
The round module builder or baler does not run continuous, but rather cycles on and off as needed. The cycle is controlled by 2 sets of infrared through-beam sensors. The upper sensors sense when the accumulator is full, initiating the module building cycle to start. The cycle continues until the lower set of sensors are activated stopping the cycle. This repeats itself until the round module reaches its maximum diameter of 90,,. When it reaches 90”,the cotton flowing from the accumulator is stopped and the wrap cycle is automatically initiated wrapping the round module. After the round module is wrapped, the operator interface asks the operator to eject. Confirmation is required to eject the round module out onto the handler. Cotton continues to pour into the accumulator during the wrap and eject cycle. After the round module has been ejected and the gate closes, the system is ready to repeat itself.
Key Features
Non-Stop Harvest
“Auto" mode, described in the previous section, enables the machine to automatically control the building of each round module allowing the picker to harvest continuously while forming, wrapping, ejecting and unloading round modules from the machine. Eliminating stops, for any reason, keeps the picker harvesting cotton.
Operator Station
The 7760 features a newly designed cab for a much improved operator's environment. New operator interfaces have been added that include a CommandCenter display mounted to the revised and updated armrest (see Figures 5 and 6). The cab layout has been revised to provide for an LCD based Cornerpost Display, updated armrest control locations, Harvest Doc Cotton ready, and overhead console revisions. With the addition of the CommandCenter display, information such as internal alarms, diagnostic trouble codes, diagnostic addresses, calibrations, mode management setup screens, set point adjust, and text displayed messages are available to the operator. The addition of the LCD based Cornerpost Display Unit provides for a dedicated round module builder display (see Figure 6), as well as a display for general harvest monitoring. Harvest warning indicators have been added for complete operator warning annunciation.
Figure 5. The all-new CommandCenter display and CommandTouch console
■jepijnq a|npoiu punoj pjeoq-uo am oj |o」iuoo o!6o| 6u!p!AOJd Aq e|q!ssod BujiseAjeq dojs-uou se>iBLU Lp!i|M BunseAjeii epoiu ?。雨? 6u!p!Aaid joj euoq>|oeq s! ainpsijipje Sim S0SS9UJB4 6uu|m jo uo!pnp9J pue sAe|ej uo,!oi!|a ai|i ‘sesn“o jeqiunu am eonpej SJ01U9O j0Mod 9兩s-p!|0s Lji!M uo!!ounfuo3 u! pesn 'sjeea uiiop Xq pedo|ey\ep |sjs||ojituoo ,xoq xey, uo peseq s! ajeMpjei] ei|i sejijiiqedBO o!isou6e!p p9A0」duj! 9|q!jediuo3 JosjApy 90|AJ9S s! pue s|ooo!ojd NVO pjepue^s Aflsnpu! luejjno uo psseq s! ainp列ipje |eo!jp9|9 ei|j_
so!uono&i3 paseg
' Ae[ds;p jsodjaujoo _9 3jn6|j
Electronic Unit Synchronization
Currently, picking unit synchronization to ground speed is done via a mechanical link between the ground drive and unit drive hydrostatic pumps. Each machine requires adjustment as part of the manufacturing process. The 7760 program has developed the electronic unit speed synchronization system. This technology eliminates the synchronization adjustment in manufacturing and delivers synchronized unit speed at picking speeds up to 4.2 mph. The improved range of synchronization improves the picking efficiency of the machine. System calibrations provide for precise and accurate control of the picking unit speeds for the entire harvest range.
ProDrive? Automatic Shift Transmission
The 7760 also has a new electronic controlled 2-speed powershift transmission with automatic shifting and independent hydraulic wet disc brake design with an integrated spring applied, hydraulic released park brake. Increased tractive effort and higher loads will be carried through a high capacity four pinion differential with hydraulically actuated differential lock to more effectively and reliably transfer the power to the ground in adverse as well as normal conditions.
Electronic Controlled Variable Speed Hydrostatic Ground Drive
ProDrive? Automatic-ShiftTransmission (AST)
? Picking Mode 6.8 kph (4.2 mph)
? Scrapping Mode 8.1 kph (5.0 mph)
? Field Transport Mode 14.5 kph (9.0 mph)
? Road Transport Mode 27.4 kph (17.0 mph)
Power Module
The heart within the power module is a tier III emission certified 13.5L John Deere PowerTechPlus? engine rated at 373 kW (500 HP) @ 2100 RPM. Coupled to this powerplant is a direct drive pump drive gearbox which provides efficient transfer of power to the hydrostatic, hydraulic systems and cotton fans.
Walk-under Mainframe
The new mainframe design allows walk-under clearance into the power-module area to improve access into the engine compartment for daily service and maintenance.
Air System
In order to meet the increased cotton conveying demands due to increasing ground speed to 4.2 mph, twin high efficiency fans deliver improved air flow rates and consume less power.
Mechanical Rear Drive Axle
The on-board cotton handling/moduling system added nearly 20,000 lbs of weight to the rear axle compared to our current 9996 cotton harvester.
A new rear axle and tire size (see Figure 7) were developed to address higher vehicle weights (without increasing ground compaction), increased tractive effort requirements and increased maneuverability requirements.
Figure 7. Mechanical rear axle
By converting to larger radial constructed rear tires, ground compaction under the rear tires remains comparable to the 9996. The static loaded rolling radius increased 30% over the 9996.
The new rear axle is powered 100% of the time by an electronically controlled hydrostatic system. This system works in conjunction with the front axle hydrostatic system to provide increased rim pull while maintaining current transport speed. This translates into a machine that is better at climbing hills and is less prone to getting stuck in muddy conditions.
Improvements to turning radius over the 9996 cotton picker, in light of a 20% increase in vehicle wheelbase, are possible due to a 55-degree steer angle, a 34% increase in steer angle over the 9996. This results in improved vehicle maneuverability over the 9996 by actually reducing the vehicle turning radius by over 36%. This reduction allows the machine to turn back on the adjacent unpicked rows without requiring the use of power hydraulic brakes or making a three point turn, resulting in less structural stress, less power, and less time to make the turn.
Spec Comparison
Rear axle weight comparisons
9996= 18,000 lbs 7760 = 38,000 lbs 111% increase in rear axle weight Tread setting options
Same for both a 9996 and 7760 - 30,32,36,38 & 40 in Oscillation comparison 9996 = 8.3 deg 7760 = 9.0 deg
8.4% increase oscillation angle Wheel base comparison
9996= 141" (3.58m)
7760 = 170" (4.32m)
20.6% increase in wheel base Steer angle comparison 9996 = 41 deg 7760 = 55 deg
34.1 % increase in steer angle
Turning radius comparison (6 row heads require tighter turning radius to turn back on adjacent 6 rows)
9996 = 236” (5.99m)
7760 = 150”(3.81m)
36.4% reduction in turning radius
Ground compaction
Within 2-3 psi of 9996
Round Module Handling
Figure 9. Round Module Handler CM1100
Figure 8. Staging Round Modules
It was already mentioned that the round shape sheds water and the plastic wrap protects the fiber. Some other notable advantages of the round modules include water protection and reduced waste during moving. Notice how the cover-edge on the round module keeps the water away from the fiber (see Figure 10) when exposed to ponding rainfall. And when the round modules are moved, there’s typically less waste as well. Typical waste or cotton left behind in the field and gin yard when moving conventional modules (see Figure 11).
Once the cotton is harvested, the round modules are easily staged for conventional module truck pick-up (see Figure 8), moved to high ground if necessary, or loaded for transport. The Frontier Round Module Handler CM 1100,coupled to an 8000 series John Deere tractor, provides an effective solution to move, stage or load round modules (see Figure 9) and also provides the flexibility to do these operations when convenient and when circumstances and manpower allow.
11
Table 2: Machine Specifications
Figure 10. Round Modules in Standing Water
Figure 11. Waste from Conventional Modules
Module Transporting
The round modules provide additional flexibility for transporting seed cotton to the gin as either a traditional module truck (see Figure 12), with the chain bed modified slightly, or a standard flatbed trailer can be used (see Figure 13).
Figure 12. Conventional Module Truck Figure 13. Flatbed Trailers
Ginning
We’ve invested a tremendous amount of engineering time and energy to make sure that the round modules are uniform. Uniform in size, density and moisture. This uniformity has proven to be very beneficial to the ginning process. Ginning experts that hav